![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gch3 | Structured version Visualization version GIF version |
Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gch3 | β’ (GCH = V β βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 β’ ((GCH = V β§ π₯ β On) β π₯ β On) | |
2 | fvex 6904 | . . . . 5 β’ (β΅βπ₯) β V | |
3 | simpl 483 | . . . . 5 β’ ((GCH = V β§ π₯ β On) β GCH = V) | |
4 | 2, 3 | eleqtrrid 2840 | . . . 4 β’ ((GCH = V β§ π₯ β On) β (β΅βπ₯) β GCH) |
5 | fvex 6904 | . . . . 5 β’ (β΅βsuc π₯) β V | |
6 | 5, 3 | eleqtrrid 2840 | . . . 4 β’ ((GCH = V β§ π₯ β On) β (β΅βsuc π₯) β GCH) |
7 | gchaleph2 10666 | . . . 4 β’ ((π₯ β On β§ (β΅βπ₯) β GCH β§ (β΅βsuc π₯) β GCH) β (β΅βsuc π₯) β π« (β΅βπ₯)) | |
8 | 1, 4, 6, 7 | syl3anc 1371 | . . 3 β’ ((GCH = V β§ π₯ β On) β (β΅βsuc π₯) β π« (β΅βπ₯)) |
9 | 8 | ralrimiva 3146 | . 2 β’ (GCH = V β βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯)) |
10 | alephgch 10668 | . . . . . 6 β’ ((β΅βsuc π₯) β π« (β΅βπ₯) β (β΅βπ₯) β GCH) | |
11 | 10 | ralimi 3083 | . . . . 5 β’ (βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯) β βπ₯ β On (β΅βπ₯) β GCH) |
12 | alephfnon 10059 | . . . . . 6 β’ β΅ Fn On | |
13 | ffnfv 7117 | . . . . . 6 β’ (β΅:OnβΆGCH β (β΅ Fn On β§ βπ₯ β On (β΅βπ₯) β GCH)) | |
14 | 12, 13 | mpbiran 707 | . . . . 5 β’ (β΅:OnβΆGCH β βπ₯ β On (β΅βπ₯) β GCH) |
15 | 11, 14 | sylibr 233 | . . . 4 β’ (βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯) β β΅:OnβΆGCH) |
16 | 15 | frnd 6725 | . . 3 β’ (βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯) β ran β΅ β GCH) |
17 | gch2 10669 | . . 3 β’ (GCH = V β ran β΅ β GCH) | |
18 | 16, 17 | sylibr 233 | . 2 β’ (βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯) β GCH = V) |
19 | 9, 18 | impbii 208 | 1 β’ (GCH = V β βπ₯ β On (β΅βsuc π₯) β π« (β΅βπ₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3948 π« cpw 4602 class class class wbr 5148 ran crn 5677 Oncon0 6364 suc csuc 6366 Fn wfn 6538 βΆwf 6539 βcfv 6543 β cen 8935 β΅cale 9930 GCHcgch 10614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-seqom 8447 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-oexp 8471 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-har 9551 df-wdom 9559 df-cnf 9656 df-r1 9758 df-rank 9759 df-dju 9895 df-card 9933 df-aleph 9934 df-ac 10110 df-fin4 10281 df-gch 10615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |