Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch3 Structured version   Visualization version   GIF version

Theorem gch3 10075
 Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch3 (GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))

Proof of Theorem gch3
StepHypRef Expression
1 simpr 488 . . . 4 ((GCH = V ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
2 fvex 6656 . . . . 5 (ℵ‘𝑥) ∈ V
3 simpl 486 . . . . 5 ((GCH = V ∧ 𝑥 ∈ On) → GCH = V)
42, 3eleqtrrid 2919 . . . 4 ((GCH = V ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ GCH)
5 fvex 6656 . . . . 5 (ℵ‘suc 𝑥) ∈ V
65, 3eleqtrrid 2919 . . . 4 ((GCH = V ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ GCH)
7 gchaleph2 10071 . . . 4 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ GCH ∧ (ℵ‘suc 𝑥) ∈ GCH) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
81, 4, 6, 7syl3anc 1368 . . 3 ((GCH = V ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
98ralrimiva 3170 . 2 (GCH = V → ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
10 alephgch 10073 . . . . . 6 ((ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥) → (ℵ‘𝑥) ∈ GCH)
1110ralimi 3148 . . . . 5 (∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥) → ∀𝑥 ∈ On (ℵ‘𝑥) ∈ GCH)
12 alephfnon 9468 . . . . . 6 ℵ Fn On
13 ffnfv 6855 . . . . . 6 (ℵ:On⟶GCH ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ GCH))
1412, 13mpbiran 708 . . . . 5 (ℵ:On⟶GCH ↔ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ GCH)
1511, 14sylibr 237 . . . 4 (∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥) → ℵ:On⟶GCH)
1615frnd 6494 . . 3 (∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥) → ran ℵ ⊆ GCH)
17 gch2 10074 . . 3 (GCH = V ↔ ran ℵ ⊆ GCH)
1816, 17sylibr 237 . 2 (∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥) → GCH = V)
199, 18impbii 212 1 (GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126  Vcvv 3471   ⊆ wss 3910  𝒫 cpw 4512   class class class wbr 5039  ran crn 5529  Oncon0 6164  suc csuc 6166   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328   ≈ cen 8481  ℵcale 9341  GCHcgch 10019 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-reg 9032  ax-inf2 9080 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-seqom 8059  df-1o 8077  df-2o 8078  df-oadd 8081  df-omul 8082  df-oexp 8083  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-oi 8950  df-har 8997  df-wdom 9005  df-cnf 9101  df-r1 9169  df-rank 9170  df-dju 9306  df-card 9344  df-aleph 9345  df-ac 9519  df-fin4 9686  df-gch 10020 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator