![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinfcard | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
isinfcard | β’ ((Ο β π΄ β§ (cardβπ΄) = π΄) β π΄ β ran β΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10055 | . . 3 β’ β΅ Fn On | |
2 | fvelrnb 6942 | . . 3 β’ (β΅ Fn On β (π΄ β ran β΅ β βπ₯ β On (β΅βπ₯) = π΄)) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ (π΄ β ran β΅ β βπ₯ β On (β΅βπ₯) = π΄) |
4 | alephgeom 10072 | . . . . . . 7 β’ (π₯ β On β Ο β (β΅βπ₯)) | |
5 | 4 | biimpi 215 | . . . . . 6 β’ (π₯ β On β Ο β (β΅βπ₯)) |
6 | sseq2 4000 | . . . . . 6 β’ (π΄ = (β΅βπ₯) β (Ο β π΄ β Ο β (β΅βπ₯))) | |
7 | 5, 6 | syl5ibrcom 246 | . . . . 5 β’ (π₯ β On β (π΄ = (β΅βπ₯) β Ο β π΄)) |
8 | 7 | rexlimiv 3140 | . . . 4 β’ (βπ₯ β On π΄ = (β΅βπ₯) β Ο β π΄) |
9 | 8 | pm4.71ri 560 | . . 3 β’ (βπ₯ β On π΄ = (β΅βπ₯) β (Ο β π΄ β§ βπ₯ β On π΄ = (β΅βπ₯))) |
10 | eqcom 2731 | . . . 4 β’ ((β΅βπ₯) = π΄ β π΄ = (β΅βπ₯)) | |
11 | 10 | rexbii 3086 | . . 3 β’ (βπ₯ β On (β΅βπ₯) = π΄ β βπ₯ β On π΄ = (β΅βπ₯)) |
12 | cardalephex 10080 | . . . 4 β’ (Ο β π΄ β ((cardβπ΄) = π΄ β βπ₯ β On π΄ = (β΅βπ₯))) | |
13 | 12 | pm5.32i 574 | . . 3 β’ ((Ο β π΄ β§ (cardβπ΄) = π΄) β (Ο β π΄ β§ βπ₯ β On π΄ = (β΅βπ₯))) |
14 | 9, 11, 13 | 3bitr4i 303 | . 2 β’ (βπ₯ β On (β΅βπ₯) = π΄ β (Ο β π΄ β§ (cardβπ΄) = π΄)) |
15 | 3, 14 | bitr2i 276 | 1 β’ ((Ο β π΄ β§ (cardβπ΄) = π΄) β π΄ β ran β΅) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3062 β wss 3940 ran crn 5667 Oncon0 6354 Fn wfn 6528 βcfv 6533 Οcom 7848 cardccrd 9925 β΅cale 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-oi 9500 df-har 9547 df-card 9929 df-aleph 9930 |
This theorem is referenced by: iscard3 10083 alephinit 10085 cardinfima 10087 alephiso 10088 alephsson 10090 alephfp 10098 |
Copyright terms: Public domain | W3C validator |