Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isinfcard | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
isinfcard | ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9871 | . . 3 ⊢ ℵ Fn On | |
2 | fvelrnb 6862 | . . 3 ⊢ (ℵ Fn On → (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴) |
4 | alephgeom 9888 | . . . . . . 7 ⊢ (𝑥 ∈ On ↔ ω ⊆ (ℵ‘𝑥)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ On → ω ⊆ (ℵ‘𝑥)) |
6 | sseq2 3952 | . . . . . 6 ⊢ (𝐴 = (ℵ‘𝑥) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘𝑥))) | |
7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴)) |
8 | 7 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴) |
9 | 8 | pm4.71ri 562 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
10 | eqcom 2743 | . . . 4 ⊢ ((ℵ‘𝑥) = 𝐴 ↔ 𝐴 = (ℵ‘𝑥)) | |
11 | 10 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
12 | cardalephex 9896 | . . . 4 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | |
13 | 12 | pm5.32i 576 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
14 | 9, 11, 13 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
15 | 3, 14 | bitr2i 276 | 1 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 ⊆ wss 3892 ran crn 5601 Oncon0 6281 Fn wfn 6453 ‘cfv 6458 ωcom 7744 cardccrd 9741 ℵcale 9742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-oi 9317 df-har 9364 df-card 9745 df-aleph 9746 |
This theorem is referenced by: iscard3 9899 alephinit 9901 cardinfima 9903 alephiso 9904 alephsson 9906 alephfp 9914 |
Copyright terms: Public domain | W3C validator |