| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinfcard | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| isinfcard | ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 10105 | . . 3 ⊢ ℵ Fn On | |
| 2 | fvelrnb 6969 | . . 3 ⊢ (ℵ Fn On → (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴) |
| 4 | alephgeom 10122 | . . . . . . 7 ⊢ (𝑥 ∈ On ↔ ω ⊆ (ℵ‘𝑥)) | |
| 5 | 4 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ On → ω ⊆ (ℵ‘𝑥)) |
| 6 | sseq2 4010 | . . . . . 6 ⊢ (𝐴 = (ℵ‘𝑥) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘𝑥))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴)) |
| 8 | 7 | rexlimiv 3148 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴) |
| 9 | 8 | pm4.71ri 560 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
| 10 | eqcom 2744 | . . . 4 ⊢ ((ℵ‘𝑥) = 𝐴 ↔ 𝐴 = (ℵ‘𝑥)) | |
| 11 | 10 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
| 12 | cardalephex 10130 | . . . 4 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | |
| 13 | 12 | pm5.32i 574 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
| 14 | 9, 11, 13 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 15 | 3, 14 | bitr2i 276 | 1 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ran crn 5686 Oncon0 6384 Fn wfn 6556 ‘cfv 6561 ωcom 7887 cardccrd 9975 ℵcale 9976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-oi 9550 df-har 9597 df-card 9979 df-aleph 9980 |
| This theorem is referenced by: iscard3 10133 alephinit 10135 cardinfima 10137 alephiso 10138 alephsson 10140 alephfp 10148 |
| Copyright terms: Public domain | W3C validator |