Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isinfcard | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
isinfcard | ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9891 | . . 3 ⊢ ℵ Fn On | |
2 | fvelrnb 6867 | . . 3 ⊢ (ℵ Fn On → (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴) |
4 | alephgeom 9908 | . . . . . . 7 ⊢ (𝑥 ∈ On ↔ ω ⊆ (ℵ‘𝑥)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ On → ω ⊆ (ℵ‘𝑥)) |
6 | sseq2 3956 | . . . . . 6 ⊢ (𝐴 = (ℵ‘𝑥) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘𝑥))) | |
7 | 5, 6 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴)) |
8 | 7 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴) |
9 | 8 | pm4.71ri 561 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
10 | eqcom 2744 | . . . 4 ⊢ ((ℵ‘𝑥) = 𝐴 ↔ 𝐴 = (ℵ‘𝑥)) | |
11 | 10 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
12 | cardalephex 9916 | . . . 4 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | |
13 | 12 | pm5.32i 575 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
14 | 9, 11, 13 | 3bitr4i 302 | . 2 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
15 | 3, 14 | bitr2i 275 | 1 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 ⊆ wss 3896 ran crn 5606 Oncon0 6286 Fn wfn 6458 ‘cfv 6463 ωcom 7755 cardccrd 9761 ℵcale 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-oi 9337 df-har 9384 df-card 9765 df-aleph 9766 |
This theorem is referenced by: iscard3 9919 alephinit 9921 cardinfima 9923 alephiso 9924 alephsson 9926 alephfp 9934 |
Copyright terms: Public domain | W3C validator |