| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinfcard | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| isinfcard | ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 9959 | . . 3 ⊢ ℵ Fn On | |
| 2 | fvelrnb 6883 | . . 3 ⊢ (ℵ Fn On → (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴) |
| 4 | alephgeom 9976 | . . . . . . 7 ⊢ (𝑥 ∈ On ↔ ω ⊆ (ℵ‘𝑥)) | |
| 5 | 4 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ On → ω ⊆ (ℵ‘𝑥)) |
| 6 | sseq2 3962 | . . . . . 6 ⊢ (𝐴 = (ℵ‘𝑥) → (ω ⊆ 𝐴 ↔ ω ⊆ (ℵ‘𝑥))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴)) |
| 8 | 7 | rexlimiv 3123 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ω ⊆ 𝐴) |
| 9 | 8 | pm4.71ri 560 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
| 10 | eqcom 2736 | . . . 4 ⊢ ((ℵ‘𝑥) = 𝐴 ↔ 𝐴 = (ℵ‘𝑥)) | |
| 11 | 10 | rexbii 3076 | . . 3 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
| 12 | cardalephex 9984 | . . . 4 ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | |
| 13 | 12 | pm5.32i 574 | . . 3 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ (ω ⊆ 𝐴 ∧ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
| 14 | 9, 11, 13 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ On (ℵ‘𝑥) = 𝐴 ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 15 | 3, 14 | bitr2i 276 | 1 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 ran crn 5620 Oncon0 6307 Fn wfn 6477 ‘cfv 6482 ωcom 7799 cardccrd 9831 ℵcale 9832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-card 9835 df-aleph 9836 |
| This theorem is referenced by: iscard3 9987 alephinit 9989 cardinfima 9991 alephiso 9992 alephsson 9994 alephfp 10002 |
| Copyright terms: Public domain | W3C validator |