| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfp2 | Structured version Visualization version GIF version | ||
| Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 10067 for an actual example of a fixed point. Compare the inequality alephle 10047 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| alephfp2 | ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsson 10059 | . . 3 ⊢ ran ℵ ⊆ On | |
| 2 | eqid 2730 | . . . 4 ⊢ (rec(ℵ, ω) ↾ ω) = (rec(ℵ, ω) ↾ ω) | |
| 3 | 2 | alephfplem4 10066 | . . 3 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ ran ℵ |
| 4 | 1, 3 | sselii 3945 | . 2 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On |
| 5 | 2 | alephfp 10067 | . 2 ⊢ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) |
| 6 | fveq2 6860 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → (ℵ‘𝑥) = (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω))) | |
| 7 | id 22 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → 𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) | |
| 8 | 6, 7 | eqeq12d 2746 | . . 3 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → ((ℵ‘𝑥) = 𝑥 ↔ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω))) |
| 9 | 8 | rspcev 3591 | . 2 ⊢ ((∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On ∧ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) → ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥) |
| 10 | 4, 5, 9 | mp2an 692 | 1 ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∪ cuni 4873 ran crn 5641 ↾ cres 5642 “ cima 5643 Oncon0 6334 ‘cfv 6513 ωcom 7844 reccrdg 8379 ℵcale 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-oi 9469 df-har 9516 df-card 9898 df-aleph 9899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |