![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfp2 | Structured version Visualization version GIF version |
Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 10107 for an actual example of a fixed point. Compare the inequality alephle 10087 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephfp2 | ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsson 10099 | . . 3 ⊢ ran ℵ ⊆ On | |
2 | eqid 2731 | . . . 4 ⊢ (rec(ℵ, ω) ↾ ω) = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | alephfplem4 10106 | . . 3 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ ran ℵ |
4 | 1, 3 | sselii 3979 | . 2 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On |
5 | 2 | alephfp 10107 | . 2 ⊢ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) |
6 | fveq2 6891 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → (ℵ‘𝑥) = (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω))) | |
7 | id 22 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → 𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) | |
8 | 6, 7 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → ((ℵ‘𝑥) = 𝑥 ↔ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω))) |
9 | 8 | rspcev 3612 | . 2 ⊢ ((∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On ∧ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) → ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥) |
10 | 4, 5, 9 | mp2an 689 | 1 ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∪ cuni 4908 ran crn 5677 ↾ cres 5678 “ cima 5679 Oncon0 6364 ‘cfv 6543 ωcom 7859 reccrdg 8413 ℵcale 9935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-oi 9509 df-har 9556 df-card 9938 df-aleph 9939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |