![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfp2 | Structured version Visualization version GIF version |
Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 9217 for an actual example of a fixed point. Compare the inequality alephle 9197 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephfp2 | ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsson 9209 | . . 3 ⊢ ran ℵ ⊆ On | |
2 | eqid 2799 | . . . 4 ⊢ (rec(ℵ, ω) ↾ ω) = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | alephfplem4 9216 | . . 3 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ ran ℵ |
4 | 1, 3 | sselii 3795 | . 2 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On |
5 | 2 | alephfp 9217 | . 2 ⊢ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) |
6 | fveq2 6411 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → (ℵ‘𝑥) = (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω))) | |
7 | id 22 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → 𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) | |
8 | 6, 7 | eqeq12d 2814 | . . 3 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → ((ℵ‘𝑥) = 𝑥 ↔ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω))) |
9 | 8 | rspcev 3497 | . 2 ⊢ ((∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On ∧ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) → ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥) |
10 | 4, 5, 9 | mp2an 684 | 1 ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ∪ cuni 4628 ran crn 5313 ↾ cres 5314 “ cima 5315 Oncon0 5941 ‘cfv 6101 ωcom 7299 reccrdg 7744 ℵcale 9048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-oi 8657 df-har 8705 df-card 9051 df-aleph 9052 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |