| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfp2 | Structured version Visualization version GIF version | ||
| Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 10122 for an actual example of a fixed point. Compare the inequality alephle 10102 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| alephfp2 | ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsson 10114 | . . 3 ⊢ ran ℵ ⊆ On | |
| 2 | eqid 2735 | . . . 4 ⊢ (rec(ℵ, ω) ↾ ω) = (rec(ℵ, ω) ↾ ω) | |
| 3 | 2 | alephfplem4 10121 | . . 3 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ ran ℵ |
| 4 | 1, 3 | sselii 3955 | . 2 ⊢ ∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On |
| 5 | 2 | alephfp 10122 | . 2 ⊢ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) |
| 6 | fveq2 6876 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → (ℵ‘𝑥) = (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω))) | |
| 7 | id 22 | . . . 4 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → 𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) | |
| 8 | 6, 7 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = ∪ ((rec(ℵ, ω) ↾ ω) “ ω) → ((ℵ‘𝑥) = 𝑥 ↔ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω))) |
| 9 | 8 | rspcev 3601 | . 2 ⊢ ((∪ ((rec(ℵ, ω) ↾ ω) “ ω) ∈ On ∧ (ℵ‘∪ ((rec(ℵ, ω) ↾ ω) “ ω)) = ∪ ((rec(ℵ, ω) ↾ ω) “ ω)) → ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥) |
| 10 | 4, 5, 9 | mp2an 692 | 1 ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∪ cuni 4883 ran crn 5655 ↾ cres 5656 “ cima 5657 Oncon0 6352 ‘cfv 6531 ωcom 7861 reccrdg 8423 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-har 9571 df-card 9953 df-aleph 9954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |