MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsson Structured version   Visualization version   GIF version

Theorem alephsson 9997
Description: The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephsson ran ℵ ⊆ On

Proof of Theorem alephsson
StepHypRef Expression
1 isinfcard 9989 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ)
2 cardon 9843 . . . . 5 (card‘𝑥) ∈ On
3 eleq1 2819 . . . . 5 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
42, 3mpbii 233 . . . 4 ((card‘𝑥) = 𝑥𝑥 ∈ On)
54adantl 481 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) → 𝑥 ∈ On)
61, 5sylbir 235 . 2 (𝑥 ∈ ran ℵ → 𝑥 ∈ On)
76ssriv 3933 1 ran ℵ ⊆ On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wss 3897  ran crn 5620  Oncon0 6312  cfv 6487  ωcom 7802  cardccrd 9834  cale 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9402  df-har 9449  df-card 9838  df-aleph 9839
This theorem is referenced by:  unialeph  9998  alephsmo  9999  alephfplem3  10003  alephfp  10005  alephfp2  10006
  Copyright terms: Public domain W3C validator