MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsson Structured version   Visualization version   GIF version

Theorem alephsson 10147
Description: The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephsson ran ℵ ⊆ On

Proof of Theorem alephsson
StepHypRef Expression
1 isinfcard 10139 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ)
2 cardon 9991 . . . . 5 (card‘𝑥) ∈ On
3 eleq1 2829 . . . . 5 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
42, 3mpbii 233 . . . 4 ((card‘𝑥) = 𝑥𝑥 ∈ On)
54adantl 481 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) → 𝑥 ∈ On)
61, 5sylbir 235 . 2 (𝑥 ∈ ran ℵ → 𝑥 ∈ On)
76ssriv 4002 1 ran ℵ ⊆ On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wss 3966  ran crn 5694  Oncon0 6392  cfv 6569  ωcom 7894  cardccrd 9982  cale 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-oi 9557  df-har 9604  df-card 9986  df-aleph 9987
This theorem is referenced by:  unialeph  10148  alephsmo  10149  alephfplem3  10153  alephfp  10155  alephfp2  10156
  Copyright terms: Public domain W3C validator