![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsson | Structured version Visualization version GIF version |
Description: The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephsson | ⊢ ran ℵ ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinfcard 10089 | . . 3 ⊢ ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ) | |
2 | cardon 9941 | . . . . 5 ⊢ (card‘𝑥) ∈ On | |
3 | eleq1 2821 | . . . . 5 ⊢ ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On)) | |
4 | 2, 3 | mpbii 232 | . . . 4 ⊢ ((card‘𝑥) = 𝑥 → 𝑥 ∈ On) |
5 | 4 | adantl 482 | . . 3 ⊢ ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) → 𝑥 ∈ On) |
6 | 1, 5 | sylbir 234 | . 2 ⊢ (𝑥 ∈ ran ℵ → 𝑥 ∈ On) |
7 | 6 | ssriv 3986 | 1 ⊢ ran ℵ ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ran crn 5677 Oncon0 6364 ‘cfv 6543 ωcom 7857 cardccrd 9932 ℵcale 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-card 9936 df-aleph 9937 |
This theorem is referenced by: unialeph 10098 alephsmo 10099 alephfplem3 10103 alephfp 10105 alephfp2 10106 |
Copyright terms: Public domain | W3C validator |