MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsson Structured version   Visualization version   GIF version

Theorem alephsson 9209
Description: The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephsson ran ℵ ⊆ On

Proof of Theorem alephsson
StepHypRef Expression
1 isinfcard 9201 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ)
2 cardon 9056 . . . . 5 (card‘𝑥) ∈ On
3 eleq1 2866 . . . . 5 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
42, 3mpbii 225 . . . 4 ((card‘𝑥) = 𝑥𝑥 ∈ On)
54adantl 474 . . 3 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) → 𝑥 ∈ On)
61, 5sylbir 227 . 2 (𝑥 ∈ ran ℵ → 𝑥 ∈ On)
76ssriv 3802 1 ran ℵ ⊆ On
Colors of variables: wff setvar class
Syntax hints:  wa 385   = wceq 1653  wcel 2157  wss 3769  ran crn 5313  Oncon0 5941  cfv 6101  ωcom 7299  cardccrd 9047  cale 9048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-oi 8657  df-har 8705  df-card 9051  df-aleph 9052
This theorem is referenced by:  unialeph  9210  alephsmo  9211  alephfplem3  9215  alephfp  9217  alephfp2  9218
  Copyright terms: Public domain W3C validator