Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnlimc | Structured version Visualization version GIF version |
Description: 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnlimc | ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3944 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | eqid 2739 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | eqid 2739 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴) | |
4 | 2 | cnfldtopon 23955 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
5 | 4 | toponrestid 22079 | . . . . 5 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
6 | 2, 3, 5 | cncfcn 24082 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))) |
7 | 1, 6 | mpan2 688 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝐴–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))) |
8 | 7 | eleq2d 2825 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))) |
9 | resttopon 22321 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
10 | 4, 9 | mpan 687 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
11 | cncnp 22440 | . . 3 ⊢ ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))) | |
12 | 10, 4, 11 | sylancl 586 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))) |
13 | 2, 3 | cnplimc 25060 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
14 | 13 | baibd 540 | . . . . 5 ⊢ (((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
15 | 14 | an32s 649 | . . . 4 ⊢ (((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
16 | 15 | ralbidva 3112 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) → (∀𝑥 ∈ 𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
17 | 16 | pm5.32da 579 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
18 | 8, 12, 17 | 3bitrd 305 | 1 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∀wral 3065 ⊆ wss 3888 ⟶wf 6433 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 ↾t crest 17140 TopOpenctopn 17141 ℂfldccnfld 20606 TopOnctopon 22068 Cn ccn 22384 CnP ccnp 22385 –cn→ccncf 24048 limℂ climc 25035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fi 9179 df-sup 9210 df-inf 9211 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-fz 13249 df-seq 13731 df-exp 13792 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-struct 16857 df-slot 16892 df-ndx 16904 df-base 16922 df-plusg 16984 df-mulr 16985 df-starv 16986 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-rest 17142 df-topn 17143 df-topgen 17163 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cn 22387 df-cnp 22388 df-xms 23482 df-ms 23483 df-cncf 24050 df-limc 25039 |
This theorem is referenced by: cnlimci 25062 fourierdlem62 43716 |
Copyright terms: Public domain | W3C validator |