MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1basss Structured version   Visualization version   GIF version

Theorem smndex1basss 18813
Description: The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
Assertion
Ref Expression
smndex1basss 𝐵 ⊆ (Base‘𝑀)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1basss
Dummy variables 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1mgm.b . . . . . 6 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
21eleq2i 2823 . . . . 5 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
3 fveq2 6822 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43sneqd 4585 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
54cbviunv 4987 . . . . . . 7 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
65uneq2i 4112 . . . . . 6 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
76eleq2i 2823 . . . . 5 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
82, 7bitri 275 . . . 4 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9 elun 4100 . . . 4 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
10 velsn 4589 . . . . 5 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
11 eliun 4943 . . . . 5 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
1210, 11orbi12i 914 . . . 4 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
138, 9, 123bitri 297 . . 3 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
14 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
15 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
16 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
1714, 15, 16smndex1ibas 18808 . . . . 5 𝐼 ∈ (Base‘𝑀)
18 eleq1 2819 . . . . 5 (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀)))
1917, 18mpbiri 258 . . . 4 (𝑏 = 𝐼𝑏 ∈ (Base‘𝑀))
20 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
2114, 15, 16, 20smndex1gbas 18810 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝐺𝑘) ∈ (Base‘𝑀))
2221adantr 480 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝐺𝑘) ∈ (Base‘𝑀))
23 elsni 4590 . . . . . . . 8 (𝑏 ∈ {(𝐺𝑘)} → 𝑏 = (𝐺𝑘))
2423eleq1d 2816 . . . . . . 7 (𝑏 ∈ {(𝐺𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2524adantl 481 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2622, 25mpbird 257 . . . . 5 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2726rexlimiva 3125 . . . 4 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} → 𝑏 ∈ (Base‘𝑀))
2819, 27jaoi 857 . . 3 ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2913, 28sylbi 217 . 2 (𝑏𝐵𝑏 ∈ (Base‘𝑀))
3029ssriv 3933 1 𝐵 ⊆ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wrex 3056  cun 3895  wss 3897  {csn 4573   ciun 4939  cmpt 5170  cfv 6481  (class class class)co 7346  0cc0 11006  cn 12125  0cn0 12381  ..^cfzo 13554   mod cmo 13773  Basecbs 17120  EndoFMndcefmnd 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-tset 17180  df-efmnd 18777
This theorem is referenced by:  smndex1bas  18814  smndex1mgm  18815  smndex1sgrp  18816  smndex1mnd  18818  smndex1id  18819
  Copyright terms: Public domain W3C validator