![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1basss | Structured version Visualization version GIF version |
Description: The modulo function πΌ and the constant functions (πΊβπΎ) are endofunctions on β0. (Contributed by AV, 12-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
smndex1mgm.b | β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) |
Ref | Expression |
---|---|
smndex1basss | β’ π΅ β (Baseβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1mgm.b | . . . . . 6 β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) | |
2 | 1 | eleq2i 2825 | . . . . 5 β’ (π β π΅ β π β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)})) |
3 | fveq2 6891 | . . . . . . . . 9 β’ (π = π β (πΊβπ) = (πΊβπ)) | |
4 | 3 | sneqd 4640 | . . . . . . . 8 β’ (π = π β {(πΊβπ)} = {(πΊβπ)}) |
5 | 4 | cbviunv 5043 | . . . . . . 7 β’ βͺ π β (0..^π){(πΊβπ)} = βͺ π β (0..^π){(πΊβπ)} |
6 | 5 | uneq2i 4160 | . . . . . 6 β’ ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) |
7 | 6 | eleq2i 2825 | . . . . 5 β’ (π β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) β π β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)})) |
8 | 2, 7 | bitri 274 | . . . 4 β’ (π β π΅ β π β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)})) |
9 | elun 4148 | . . . 4 β’ (π β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) β (π β {πΌ} β¨ π β βͺ π β (0..^π){(πΊβπ)})) | |
10 | velsn 4644 | . . . . 5 β’ (π β {πΌ} β π = πΌ) | |
11 | eliun 5001 | . . . . 5 β’ (π β βͺ π β (0..^π){(πΊβπ)} β βπ β (0..^π)π β {(πΊβπ)}) | |
12 | 10, 11 | orbi12i 913 | . . . 4 β’ ((π β {πΌ} β¨ π β βͺ π β (0..^π){(πΊβπ)}) β (π = πΌ β¨ βπ β (0..^π)π β {(πΊβπ)})) |
13 | 8, 9, 12 | 3bitri 296 | . . 3 β’ (π β π΅ β (π = πΌ β¨ βπ β (0..^π)π β {(πΊβπ)})) |
14 | smndex1ibas.m | . . . . . 6 β’ π = (EndoFMndββ0) | |
15 | smndex1ibas.n | . . . . . 6 β’ π β β | |
16 | smndex1ibas.i | . . . . . 6 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
17 | 14, 15, 16 | smndex1ibas 18780 | . . . . 5 β’ πΌ β (Baseβπ) |
18 | eleq1 2821 | . . . . 5 β’ (π = πΌ β (π β (Baseβπ) β πΌ β (Baseβπ))) | |
19 | 17, 18 | mpbiri 257 | . . . 4 β’ (π = πΌ β π β (Baseβπ)) |
20 | smndex1ibas.g | . . . . . . . 8 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
21 | 14, 15, 16, 20 | smndex1gbas 18782 | . . . . . . 7 β’ (π β (0..^π) β (πΊβπ) β (Baseβπ)) |
22 | 21 | adantr 481 | . . . . . 6 β’ ((π β (0..^π) β§ π β {(πΊβπ)}) β (πΊβπ) β (Baseβπ)) |
23 | elsni 4645 | . . . . . . . 8 β’ (π β {(πΊβπ)} β π = (πΊβπ)) | |
24 | 23 | eleq1d 2818 | . . . . . . 7 β’ (π β {(πΊβπ)} β (π β (Baseβπ) β (πΊβπ) β (Baseβπ))) |
25 | 24 | adantl 482 | . . . . . 6 β’ ((π β (0..^π) β§ π β {(πΊβπ)}) β (π β (Baseβπ) β (πΊβπ) β (Baseβπ))) |
26 | 22, 25 | mpbird 256 | . . . . 5 β’ ((π β (0..^π) β§ π β {(πΊβπ)}) β π β (Baseβπ)) |
27 | 26 | rexlimiva 3147 | . . . 4 β’ (βπ β (0..^π)π β {(πΊβπ)} β π β (Baseβπ)) |
28 | 19, 27 | jaoi 855 | . . 3 β’ ((π = πΌ β¨ βπ β (0..^π)π β {(πΊβπ)}) β π β (Baseβπ)) |
29 | 13, 28 | sylbi 216 | . 2 β’ (π β π΅ β π β (Baseβπ)) |
30 | 29 | ssriv 3986 | 1 β’ π΅ β (Baseβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwrex 3070 βͺ cun 3946 β wss 3948 {csn 4628 βͺ ciun 4997 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 0cc0 11109 βcn 12211 β0cn0 12471 ..^cfzo 13626 mod cmo 13833 Basecbs 17143 EndoFMndcefmnd 18748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-tset 17215 df-efmnd 18749 |
This theorem is referenced by: smndex1bas 18786 smndex1mgm 18787 smndex1sgrp 18788 smndex1mnd 18790 smndex1id 18791 |
Copyright terms: Public domain | W3C validator |