MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1basss Structured version   Visualization version   GIF version

Theorem smndex1basss 18544
Description: The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
Assertion
Ref Expression
smndex1basss 𝐵 ⊆ (Base‘𝑀)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1basss
Dummy variables 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1mgm.b . . . . . 6 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
21eleq2i 2830 . . . . 5 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
3 fveq2 6774 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43sneqd 4573 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
54cbviunv 4970 . . . . . . 7 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
65uneq2i 4094 . . . . . 6 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
76eleq2i 2830 . . . . 5 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
82, 7bitri 274 . . . 4 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9 elun 4083 . . . 4 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
10 velsn 4577 . . . . 5 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
11 eliun 4928 . . . . 5 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
1210, 11orbi12i 912 . . . 4 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
138, 9, 123bitri 297 . . 3 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
14 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
15 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
16 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
1714, 15, 16smndex1ibas 18539 . . . . 5 𝐼 ∈ (Base‘𝑀)
18 eleq1 2826 . . . . 5 (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀)))
1917, 18mpbiri 257 . . . 4 (𝑏 = 𝐼𝑏 ∈ (Base‘𝑀))
20 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
2114, 15, 16, 20smndex1gbas 18541 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝐺𝑘) ∈ (Base‘𝑀))
2221adantr 481 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝐺𝑘) ∈ (Base‘𝑀))
23 elsni 4578 . . . . . . . 8 (𝑏 ∈ {(𝐺𝑘)} → 𝑏 = (𝐺𝑘))
2423eleq1d 2823 . . . . . . 7 (𝑏 ∈ {(𝐺𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2524adantl 482 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2622, 25mpbird 256 . . . . 5 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2726rexlimiva 3210 . . . 4 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} → 𝑏 ∈ (Base‘𝑀))
2819, 27jaoi 854 . . 3 ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2913, 28sylbi 216 . 2 (𝑏𝐵𝑏 ∈ (Base‘𝑀))
3029ssriv 3925 1 𝐵 ⊆ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065  cun 3885  wss 3887  {csn 4561   ciun 4924  cmpt 5157  cfv 6433  (class class class)co 7275  0cc0 10871  cn 11973  0cn0 12233  ..^cfzo 13382   mod cmo 13589  Basecbs 16912  EndoFMndcefmnd 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-tset 16981  df-efmnd 18508
This theorem is referenced by:  smndex1bas  18545  smndex1mgm  18546  smndex1sgrp  18547  smndex1mnd  18549  smndex1id  18550
  Copyright terms: Public domain W3C validator