MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1basss Structured version   Visualization version   GIF version

Theorem smndex1basss 18940
Description: The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
Assertion
Ref Expression
smndex1basss 𝐵 ⊆ (Base‘𝑀)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1basss
Dummy variables 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1mgm.b . . . . . 6 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
21eleq2i 2836 . . . . 5 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
3 fveq2 6920 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43sneqd 4660 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
54cbviunv 5063 . . . . . . 7 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
65uneq2i 4188 . . . . . 6 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
76eleq2i 2836 . . . . 5 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
82, 7bitri 275 . . . 4 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9 elun 4176 . . . 4 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
10 velsn 4664 . . . . 5 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
11 eliun 5019 . . . . 5 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
1210, 11orbi12i 913 . . . 4 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
138, 9, 123bitri 297 . . 3 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
14 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
15 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
16 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
1714, 15, 16smndex1ibas 18935 . . . . 5 𝐼 ∈ (Base‘𝑀)
18 eleq1 2832 . . . . 5 (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀)))
1917, 18mpbiri 258 . . . 4 (𝑏 = 𝐼𝑏 ∈ (Base‘𝑀))
20 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
2114, 15, 16, 20smndex1gbas 18937 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝐺𝑘) ∈ (Base‘𝑀))
2221adantr 480 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝐺𝑘) ∈ (Base‘𝑀))
23 elsni 4665 . . . . . . . 8 (𝑏 ∈ {(𝐺𝑘)} → 𝑏 = (𝐺𝑘))
2423eleq1d 2829 . . . . . . 7 (𝑏 ∈ {(𝐺𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2524adantl 481 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2622, 25mpbird 257 . . . . 5 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2726rexlimiva 3153 . . . 4 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} → 𝑏 ∈ (Base‘𝑀))
2819, 27jaoi 856 . . 3 ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2913, 28sylbi 217 . 2 (𝑏𝐵𝑏 ∈ (Base‘𝑀))
3029ssriv 4012 1 𝐵 ⊆ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  cun 3974  wss 3976  {csn 4648   ciun 5015  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  cn 12293  0cn0 12553  ..^cfzo 13711   mod cmo 13920  Basecbs 17258  EndoFMndcefmnd 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-tset 17330  df-efmnd 18904
This theorem is referenced by:  smndex1bas  18941  smndex1mgm  18942  smndex1sgrp  18943  smndex1mnd  18945  smndex1id  18946
  Copyright terms: Public domain W3C validator