Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1basss Structured version   Visualization version   GIF version

Theorem smndex1basss 18049
 Description: The modulo function 𝐼 and the constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
Assertion
Ref Expression
smndex1basss 𝐵 ⊆ (Base‘𝑀)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1basss
Dummy variables 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1mgm.b . . . . . 6 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
21eleq2i 2903 . . . . 5 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
3 fveq2 6643 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43sneqd 4552 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
54cbviunv 4938 . . . . . . 7 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
65uneq2i 4112 . . . . . 6 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
76eleq2i 2903 . . . . 5 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
82, 7bitri 278 . . . 4 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9 elun 4101 . . . 4 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
10 velsn 4556 . . . . 5 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
11 eliun 4896 . . . . 5 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
1210, 11orbi12i 912 . . . 4 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
138, 9, 123bitri 300 . . 3 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
14 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
15 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
16 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
1714, 15, 16smndex1ibas 18044 . . . . 5 𝐼 ∈ (Base‘𝑀)
18 eleq1 2899 . . . . 5 (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀)))
1917, 18mpbiri 261 . . . 4 (𝑏 = 𝐼𝑏 ∈ (Base‘𝑀))
20 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
2114, 15, 16, 20smndex1gbas 18046 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝐺𝑘) ∈ (Base‘𝑀))
2221adantr 484 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝐺𝑘) ∈ (Base‘𝑀))
23 elsni 4557 . . . . . . . 8 (𝑏 ∈ {(𝐺𝑘)} → 𝑏 = (𝐺𝑘))
2423eleq1d 2896 . . . . . . 7 (𝑏 ∈ {(𝐺𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2524adantl 485 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2622, 25mpbird 260 . . . . 5 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2726rexlimiva 3267 . . . 4 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} → 𝑏 ∈ (Base‘𝑀))
2819, 27jaoi 854 . . 3 ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2913, 28sylbi 220 . 2 (𝑏𝐵𝑏 ∈ (Base‘𝑀))
3029ssriv 3947 1 𝐵 ⊆ (Base‘𝑀)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115  ∃wrex 3127   ∪ cun 3908   ⊆ wss 3910  {csn 4540  ∪ ciun 4892   ↦ cmpt 5119  ‘cfv 6328  (class class class)co 7130  0cc0 10514  ℕcn 11615  ℕ0cn0 11875  ..^cfzo 13016   mod cmo 13220  Basecbs 16462  EndoFMndcefmnd 18012 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-tset 16563  df-efmnd 18013 This theorem is referenced by:  smndex1bas  18050  smndex1mgm  18051  smndex1sgrp  18052  smndex1mnd  18054  smndex1id  18055
 Copyright terms: Public domain W3C validator