| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1basss | Structured version Visualization version GIF version | ||
| Description: The modulo function 𝐼 and the constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| Ref | Expression |
|---|---|
| smndex1basss | ⊢ 𝐵 ⊆ (Base‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1mgm.b | . . . . . 6 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 2 | 1 | eleq2i 2820 | . . . . 5 ⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
| 3 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | |
| 4 | 3 | sneqd 4601 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
| 5 | 4 | cbviunv 5004 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} = ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} |
| 6 | 5 | uneq2i 4128 | . . . . . 6 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) = ({𝐼} ∪ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) |
| 7 | 6 | eleq2i 2820 | . . . . 5 ⊢ (𝑏 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
| 8 | 2, 7 | bitri 275 | . . . 4 ⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ({𝐼} ∪ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
| 9 | elun 4116 | . . . 4 ⊢ (𝑏 ∈ ({𝐼} ∪ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) | |
| 10 | velsn 4605 | . . . . 5 ⊢ (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼) | |
| 11 | eliun 4959 | . . . . 5 ⊢ (𝑏 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)}) | |
| 12 | 10, 11 | orbi12i 914 | . . . 4 ⊢ ((𝑏 ∈ {𝐼} ∨ 𝑏 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)})) |
| 13 | 8, 9, 12 | 3bitri 297 | . . 3 ⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)})) |
| 14 | smndex1ibas.m | . . . . . 6 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 15 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 16 | smndex1ibas.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 17 | 14, 15, 16 | smndex1ibas 18827 | . . . . 5 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 18 | eleq1 2816 | . . . . 5 ⊢ (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀))) | |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝑏 = 𝐼 → 𝑏 ∈ (Base‘𝑀)) |
| 20 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 21 | 14, 15, 16, 20 | smndex1gbas 18829 | . . . . . . 7 ⊢ (𝑘 ∈ (0..^𝑁) → (𝐺‘𝑘) ∈ (Base‘𝑀)) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺‘𝑘)}) → (𝐺‘𝑘) ∈ (Base‘𝑀)) |
| 23 | elsni 4606 | . . . . . . . 8 ⊢ (𝑏 ∈ {(𝐺‘𝑘)} → 𝑏 = (𝐺‘𝑘)) | |
| 24 | 23 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑏 ∈ {(𝐺‘𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺‘𝑘) ∈ (Base‘𝑀))) |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺‘𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺‘𝑘) ∈ (Base‘𝑀))) |
| 26 | 22, 25 | mpbird 257 | . . . . 5 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺‘𝑘)}) → 𝑏 ∈ (Base‘𝑀)) |
| 27 | 26 | rexlimiva 3126 | . . . 4 ⊢ (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)} → 𝑏 ∈ (Base‘𝑀)) |
| 28 | 19, 27 | jaoi 857 | . . 3 ⊢ ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)}) → 𝑏 ∈ (Base‘𝑀)) |
| 29 | 13, 28 | sylbi 217 | . 2 ⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ (Base‘𝑀)) |
| 30 | 29 | ssriv 3950 | 1 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ∪ ciun 4955 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ..^cfzo 13615 mod cmo 13831 Basecbs 17179 EndoFMndcefmnd 18795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-tset 17239 df-efmnd 18796 |
| This theorem is referenced by: smndex1bas 18833 smndex1mgm 18834 smndex1sgrp 18835 smndex1mnd 18837 smndex1id 18838 |
| Copyright terms: Public domain | W3C validator |