MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1basss Structured version   Visualization version   GIF version

Theorem smndex1basss 18062
Description: The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
Assertion
Ref Expression
smndex1basss 𝐵 ⊆ (Base‘𝑀)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1basss
Dummy variables 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1mgm.b . . . . . 6 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
21eleq2i 2881 . . . . 5 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
3 fveq2 6645 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43sneqd 4537 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
54cbviunv 4927 . . . . . . 7 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
65uneq2i 4087 . . . . . 6 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
76eleq2i 2881 . . . . 5 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
82, 7bitri 278 . . . 4 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9 elun 4076 . . . 4 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
10 velsn 4541 . . . . 5 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
11 eliun 4885 . . . . 5 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
1210, 11orbi12i 912 . . . 4 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
138, 9, 123bitri 300 . . 3 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}))
14 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
15 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
16 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
1714, 15, 16smndex1ibas 18057 . . . . 5 𝐼 ∈ (Base‘𝑀)
18 eleq1 2877 . . . . 5 (𝑏 = 𝐼 → (𝑏 ∈ (Base‘𝑀) ↔ 𝐼 ∈ (Base‘𝑀)))
1917, 18mpbiri 261 . . . 4 (𝑏 = 𝐼𝑏 ∈ (Base‘𝑀))
20 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
2114, 15, 16, 20smndex1gbas 18059 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝐺𝑘) ∈ (Base‘𝑀))
2221adantr 484 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝐺𝑘) ∈ (Base‘𝑀))
23 elsni 4542 . . . . . . . 8 (𝑏 ∈ {(𝐺𝑘)} → 𝑏 = (𝐺𝑘))
2423eleq1d 2874 . . . . . . 7 (𝑏 ∈ {(𝐺𝑘)} → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2524adantl 485 . . . . . 6 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → (𝑏 ∈ (Base‘𝑀) ↔ (𝐺𝑘) ∈ (Base‘𝑀)))
2622, 25mpbird 260 . . . . 5 ((𝑘 ∈ (0..^𝑁) ∧ 𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2726rexlimiva 3240 . . . 4 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} → 𝑏 ∈ (Base‘𝑀))
2819, 27jaoi 854 . . 3 ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)}) → 𝑏 ∈ (Base‘𝑀))
2913, 28sylbi 220 . 2 (𝑏𝐵𝑏 ∈ (Base‘𝑀))
3029ssriv 3919 1 𝐵 ⊆ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  cun 3879  wss 3881  {csn 4525   ciun 4881  cmpt 5110  cfv 6324  (class class class)co 7135  0cc0 10526  cn 11625  0cn0 11885  ..^cfzo 13028   mod cmo 13232  Basecbs 16475  EndoFMndcefmnd 18025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-tset 16576  df-efmnd 18026
This theorem is referenced by:  smndex1bas  18063  smndex1mgm  18064  smndex1sgrp  18065  smndex1mnd  18067  smndex1id  18068
  Copyright terms: Public domain W3C validator