Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0cq Structured version   Visualization version   GIF version

Theorem cdleme0cq 37343
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0cq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))

Proof of Theorem cdleme0cq
StepHypRef Expression
1 cdleme0.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
21oveq2i 7159 . 2 (𝑄 𝑈) = (𝑄 ((𝑃 𝑄) 𝑊))
3 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ HL)
4 simprrl 779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄𝐴)
5 hllat 36491 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
65ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ Lat)
7 eqid 2819 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 36417 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
109ad2antrl 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑃 ∈ (Base‘𝐾))
117, 8atbase 36417 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
124, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄 ∈ (Base‘𝐾))
13 cdleme0.j . . . . . 6 = (join‘𝐾)
147, 13latjcl 17653 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
156, 10, 12, 14syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
16 cdleme0.h . . . . . 6 𝐻 = (LHyp‘𝐾)
177, 16lhpbase 37126 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1817ad2antlr 725 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑊 ∈ (Base‘𝐾))
19 cdleme0.l . . . . . 6 = (le‘𝐾)
207, 19, 13latlej2 17663 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑄 (𝑃 𝑄))
216, 10, 12, 20syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄 (𝑃 𝑄))
22 cdleme0.m . . . . 5 = (meet‘𝐾)
237, 19, 13, 22, 8atmod3i1 36992 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
243, 4, 15, 18, 21, 23syl131anc 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
25 eqid 2819 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
2619, 13, 25, 8, 16lhpjat2 37149 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
2726adantrl 714 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑊) = (1.‘𝐾))
2827oveq2d 7164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 𝑄) (𝑄 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
29 hlol 36489 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3029ad2antrr 724 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ OL)
317, 22, 25olm11 36355 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3230, 15, 31syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
3324, 28, 323eqtrd 2858 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
342, 33syl5eq 2866 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  1.cp1 17640  Latclat 17647  OLcol 36302  Atomscatm 36391  HLchlt 36478  LHypclh 37112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-lhyp 37116 This theorem is referenced by:  cdleme11g  37393  cdlemg4b2  37738  cdlemg13a  37779
 Copyright terms: Public domain W3C validator