Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2fv | Structured version Visualization version GIF version |
Description: Value of a translation in terms of an associated atom. cdleme48fvg 38514 with simpler hypotheses. TODO: Use ltrnj 38146 to vastly simplify. (Contributed by NM, 23-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2j.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2j.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
cdlemg2fv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2j.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2j.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2738 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ 𝑊) = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | eqid 2738 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | eqid 2738 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | eqid 2738 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemg2fvlem 38608 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ⦋csb 3832 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: cdlemg2fv2 38614 cdlemg7fvbwN 38621 cdlemg7fvN 38638 |
Copyright terms: Public domain | W3C validator |