![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2fv | Structured version Visualization version GIF version |
Description: Value of a translation in terms of an associated atom. cdleme48fvg 36649 with simpler hypotheses. TODO: Use ltrnj 36281 to vastly simplify. (Contributed by NM, 23-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2j.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2j.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
cdlemg2fv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2j.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2j.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2777 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ 𝑊) = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | eqid 2777 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | eqid 2777 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | eqid 2777 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemg2fvlem 36743 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = ((𝐹‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 ⦋csb 3750 ifcif 4306 class class class wbr 4886 ↦ cmpt 4965 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 Basecbs 16255 lecple 16345 joincjn 17330 meetcmee 17331 Atomscatm 35412 HLchlt 35499 LHypclh 36133 LTrncltrn 36250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-riotaBAD 35102 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-undef 7681 df-map 8142 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-oposet 35325 df-ol 35327 df-oml 35328 df-covers 35415 df-ats 35416 df-atl 35447 df-cvlat 35471 df-hlat 35500 df-llines 35647 df-lplanes 35648 df-lvols 35649 df-lines 35650 df-psubsp 35652 df-pmap 35653 df-padd 35945 df-lhyp 36137 df-laut 36138 df-ldil 36253 df-ltrn 36254 df-trl 36308 |
This theorem is referenced by: cdlemg2fv2 36749 cdlemg7fvbwN 36756 cdlemg7fvN 36773 |
Copyright terms: Public domain | W3C validator |