![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk13 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
Ref | Expression |
---|---|
cdlemk13 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.o | . . 3 ⊢ 𝑂 = (𝑆‘𝐷) | |
2 | 1 | fveq1i 6434 | . 2 ⊢ (𝑂‘𝑃) = ((𝑆‘𝐷)‘𝑃) |
3 | cdlemk1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemk1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemk1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemk1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemk1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemk1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | cdlemk1.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | cdlemk1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
11 | cdlemk1.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemksv2 36922 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐷)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
13 | 2, 12 | syl5eq 2873 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 class class class wbr 4873 ↦ cmpt 4952 I cid 5249 ◡ccnv 5341 ↾ cres 5344 ∘ ccom 5346 ‘cfv 6123 ℩crio 6865 (class class class)co 6905 Basecbs 16222 lecple 16312 joincjn 17297 meetcmee 17298 Atomscatm 35338 HLchlt 35425 LHypclh 36059 LTrncltrn 36176 trLctrl 36233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-riotaBAD 35028 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-undef 7664 df-map 8124 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-llines 35573 df-lplanes 35574 df-lvols 35575 df-lines 35576 df-psubsp 35578 df-pmap 35579 df-padd 35871 df-lhyp 36063 df-laut 36064 df-ldil 36179 df-ltrn 36180 df-trl 36234 |
This theorem is referenced by: cdlemkole 36928 cdlemk14 36929 cdlemk13-2N 36951 |
Copyright terms: Public domain | W3C validator |