![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk13 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. π, π· are k1, f1. (Contributed by NM, 1-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk1.b | β’ π΅ = (BaseβπΎ) |
cdlemk1.l | β’ β€ = (leβπΎ) |
cdlemk1.j | β’ β¨ = (joinβπΎ) |
cdlemk1.m | β’ β§ = (meetβπΎ) |
cdlemk1.a | β’ π΄ = (AtomsβπΎ) |
cdlemk1.h | β’ π» = (LHypβπΎ) |
cdlemk1.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemk1.r | β’ π = ((trLβπΎ)βπ) |
cdlemk1.s | β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) |
cdlemk1.o | β’ π = (πβπ·) |
Ref | Expression |
---|---|
cdlemk13 | β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π βπΉ) = (π βπ)) β§ (πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ (π βπ·) β (π βπΉ))) β (πβπ) = ((π β¨ (π βπ·)) β§ ((πβπ) β¨ (π β(π· β β‘πΉ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.o | . . 3 β’ π = (πβπ·) | |
2 | 1 | fveq1i 6885 | . 2 β’ (πβπ) = ((πβπ·)βπ) |
3 | cdlemk1.b | . . 3 β’ π΅ = (BaseβπΎ) | |
4 | cdlemk1.l | . . 3 β’ β€ = (leβπΎ) | |
5 | cdlemk1.j | . . 3 β’ β¨ = (joinβπΎ) | |
6 | cdlemk1.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
7 | cdlemk1.h | . . 3 β’ π» = (LHypβπΎ) | |
8 | cdlemk1.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
9 | cdlemk1.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
10 | cdlemk1.m | . . 3 β’ β§ = (meetβπΎ) | |
11 | cdlemk1.s | . . 3 β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemksv2 40230 | . 2 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π βπΉ) = (π βπ)) β§ (πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ (π βπ·) β (π βπΉ))) β ((πβπ·)βπ) = ((π β¨ (π βπ·)) β§ ((πβπ) β¨ (π β(π· β β‘πΉ))))) |
13 | 2, 12 | eqtrid 2778 | 1 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π βπΉ) = (π βπ)) β§ (πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ (π βπ·) β (π βπΉ))) β (πβπ) = ((π β¨ (π βπ·)) β§ ((πβπ) β¨ (π β(π· β β‘πΉ))))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2934 class class class wbr 5141 β¦ cmpt 5224 I cid 5566 β‘ccnv 5668 βΎ cres 5671 β ccom 5673 βcfv 6536 β©crio 7359 (class class class)co 7404 Basecbs 17150 lecple 17210 joincjn 18273 meetcmee 18274 Atomscatm 38645 HLchlt 38732 LHypclh 39367 LTrncltrn 39484 trLctrl 39541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-riotaBAD 38335 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-undef 8256 df-map 8821 df-proset 18257 df-poset 18275 df-plt 18292 df-lub 18308 df-glb 18309 df-join 18310 df-meet 18311 df-p0 18387 df-p1 18388 df-lat 18394 df-clat 18461 df-oposet 38558 df-ol 38560 df-oml 38561 df-covers 38648 df-ats 38649 df-atl 38680 df-cvlat 38704 df-hlat 38733 df-llines 38881 df-lplanes 38882 df-lvols 38883 df-lines 38884 df-psubsp 38886 df-pmap 38887 df-padd 39179 df-lhyp 39371 df-laut 39372 df-ldil 39487 df-ltrn 39488 df-trl 39542 |
This theorem is referenced by: cdlemkole 40236 cdlemk14 40237 cdlemk13-2N 40259 |
Copyright terms: Public domain | W3C validator |