| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk13 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
| cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
| cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
| Ref | Expression |
|---|---|
| cdlemk13 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemk1.o | . . 3 ⊢ 𝑂 = (𝑆‘𝐷) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (𝑂‘𝑃) = ((𝑆‘𝐷)‘𝑃) |
| 3 | cdlemk1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | cdlemk1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 5 | cdlemk1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 6 | cdlemk1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemk1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemk1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | cdlemk1.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 10 | cdlemk1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 11 | cdlemk1.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemksv2 40892 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐷)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
| 13 | 2, 12 | eqtrid 2778 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) = ((𝑃 ∨ (𝑅‘𝐷)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐹))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 ◡ccnv 5615 ↾ cres 5618 ∘ ccom 5620 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39308 HLchlt 39395 LHypclh 40029 LTrncltrn 40146 trLctrl 40203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-riotaBAD 38998 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-llines 39543 df-lplanes 39544 df-lvols 39545 df-lines 39546 df-psubsp 39548 df-pmap 39549 df-padd 39841 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 df-trl 40204 |
| This theorem is referenced by: cdlemkole 40898 cdlemk14 40899 cdlemk13-2N 40921 |
| Copyright terms: Public domain | W3C validator |