Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkoatnle | Structured version Visualization version GIF version |
Description: Utility lemma. (Contributed by NM, 2-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
Ref | Expression |
---|---|
cdlemkoatnle | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑂‘𝑃) ∈ 𝐴 ∧ ¬ (𝑂‘𝑃) ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1202 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdlemk1.o | . . 3 ⊢ 𝑂 = (𝑆‘𝐷) | |
3 | cdlemk1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemk1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemk1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemk1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemk1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemk1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | cdlemk1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | cdlemk1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | cdlemk1.s | . . . 4 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdlemksel 38868 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑆‘𝐷) ∈ 𝑇) |
13 | 2, 12 | eqeltrid 2845 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝑂 ∈ 𝑇) |
14 | simp22 1206 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
15 | 4, 6, 7, 8 | ltrnel 38162 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑂‘𝑃) ∈ 𝐴 ∧ ¬ (𝑂‘𝑃) ≤ 𝑊)) |
16 | 1, 13, 14, 15 | syl3anc 1370 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑂‘𝑃) ∈ 𝐴 ∧ ¬ (𝑂‘𝑃) ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ↦ cmpt 5162 I cid 5489 ◡ccnv 5589 ↾ cres 5592 ∘ ccom 5594 ‘cfv 6432 ℩crio 7228 (class class class)co 7272 Basecbs 16923 lecple 16980 joincjn 18040 meetcmee 18041 Atomscatm 37286 HLchlt 37373 LHypclh 38007 LTrncltrn 38124 trLctrl 38181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-riotaBAD 36976 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-undef 8081 df-map 8609 df-proset 18024 df-poset 18042 df-plt 18059 df-lub 18075 df-glb 18076 df-join 18077 df-meet 18078 df-p0 18154 df-p1 18155 df-lat 18161 df-clat 18228 df-oposet 37199 df-ol 37201 df-oml 37202 df-covers 37289 df-ats 37290 df-atl 37321 df-cvlat 37345 df-hlat 37374 df-llines 37521 df-lplanes 37522 df-lvols 37523 df-lines 37524 df-psubsp 37526 df-pmap 37527 df-padd 37819 df-lhyp 38011 df-laut 38012 df-ldil 38127 df-ltrn 38128 df-trl 38182 |
This theorem is referenced by: cdlemk14 38877 cdlemk16a 38879 cdlemk1u 38882 cdlemk5u 38884 cdlemk6u 38885 cdlemk7u 38893 cdlemk12u 38895 cdlemkoatnle-2N 38898 |
Copyright terms: Public domain | W3C validator |