Proof of Theorem sigarcol
| Step | Hyp | Ref
| Expression |
| 1 | | sigarcol.sigar |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦
(ℑ‘((∗‘𝑥) · 𝑦))) |
| 2 | | sigarcol.a |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
| 3 | 2 | simp2d 1144 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 4 | 2 | simp3d 1145 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | 2 | simp1d 1143 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 6 | 3, 4, 5 | 3jca 1129 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
| 8 | | sigarcol.b |
. . . . . 6
⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → ¬ 𝐴 = 𝐵) |
| 10 | 1 | sigarperm 46875 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) |
| 11 | 2, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) |
| 12 | 1 | sigarperm 46875 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵))) |
| 13 | 6, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵))) |
| 14 | 11, 13 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵))) |
| 15 | 14 | eqeq1d 2739 |
. . . . . 6
⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵)) = 0)) |
| 16 | 15 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵)) = 0) |
| 17 | 1, 7, 9, 16 | sigardiv 46876 |
. . . 4
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → ((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ) |
| 18 | 4, 3 | subcld 11620 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐶 − 𝐵) ∈ ℂ) |
| 20 | 5, 3 | subcld 11620 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐴 − 𝐵) ∈ ℂ) |
| 22 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → 𝐴 ∈ ℂ) |
| 23 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → 𝐵 ∈ ℂ) |
| 24 | 9 | neqned 2947 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → 𝐴 ≠ 𝐵) |
| 25 | 22, 23, 24 | subne0d 11629 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐴 − 𝐵) ≠ 0) |
| 26 | 19, 21, 25 | divcan1d 12044 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵)) = (𝐶 − 𝐵)) |
| 27 | 26 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐵 + (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵))) = (𝐵 + (𝐶 − 𝐵))) |
| 28 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → 𝐶 ∈ ℂ) |
| 29 | 23, 28 | pncan3d 11623 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → (𝐵 + (𝐶 − 𝐵)) = 𝐶) |
| 30 | 27, 29 | eqtr2d 2778 |
. . . 4
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵)))) |
| 31 | | oveq1 7438 |
. . . . . 6
⊢ (𝑡 = ((𝐶 − 𝐵) / (𝐴 − 𝐵)) → (𝑡 · (𝐴 − 𝐵)) = (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵))) |
| 32 | 31 | oveq2d 7447 |
. . . . 5
⊢ (𝑡 = ((𝐶 − 𝐵) / (𝐴 − 𝐵)) → (𝐵 + (𝑡 · (𝐴 − 𝐵))) = (𝐵 + (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵)))) |
| 33 | 32 | rspceeqv 3645 |
. . . 4
⊢ ((((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶 − 𝐵) / (𝐴 − 𝐵)) · (𝐴 − 𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) |
| 34 | 17, 30, 33 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) |
| 35 | 34 | ex 412 |
. 2
⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) |
| 36 | 14 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵))) |
| 37 | 3 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → 𝐵 ∈ ℂ) |
| 38 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → 𝑡 ∈ ℝ) |
| 39 | 38 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → 𝑡 ∈ ℂ) |
| 40 | 5 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → 𝐴 ∈ ℂ) |
| 41 | 40, 37 | subcld 11620 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (𝐴 − 𝐵) ∈ ℂ) |
| 42 | 39, 41 | mulcld 11281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (𝑡 · (𝐴 − 𝐵)) ∈ ℂ) |
| 43 | | simp3 1139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) |
| 44 | 37, 42, 43 | mvrladdd 11676 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (𝐶 − 𝐵) = (𝑡 · (𝐴 − 𝐵))) |
| 45 | 44 | oveq1d 7446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵)) = ((𝑡 · (𝐴 − 𝐵))𝐺(𝐴 − 𝐵))) |
| 46 | 39, 41 | mulcomd 11282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (𝑡 · (𝐴 − 𝐵)) = ((𝐴 − 𝐵) · 𝑡)) |
| 47 | 46 | oveq1d 7446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝑡 · (𝐴 − 𝐵))𝐺(𝐴 − 𝐵)) = (((𝐴 − 𝐵) · 𝑡)𝐺(𝐴 − 𝐵))) |
| 48 | 45, 47 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐶 − 𝐵)𝐺(𝐴 − 𝐵)) = (((𝐴 − 𝐵) · 𝑡)𝐺(𝐴 − 𝐵))) |
| 49 | 41, 39 | mulcld 11281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐵) · 𝑡) ∈ ℂ) |
| 50 | 1 | sigarac 46867 |
. . . . . 6
⊢ ((((𝐴 − 𝐵) · 𝑡) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ) → (((𝐴 − 𝐵) · 𝑡)𝐺(𝐴 − 𝐵)) = -((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡))) |
| 51 | 49, 41, 50 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (((𝐴 − 𝐵) · 𝑡)𝐺(𝐴 − 𝐵)) = -((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡))) |
| 52 | 1 | sigarls 46872 |
. . . . . . . 8
⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡)) = (((𝐴 − 𝐵)𝐺(𝐴 − 𝐵)) · 𝑡)) |
| 53 | 41, 41, 38, 52 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡)) = (((𝐴 − 𝐵)𝐺(𝐴 − 𝐵)) · 𝑡)) |
| 54 | 1 | sigarid 46873 |
. . . . . . . . 9
⊢ ((𝐴 − 𝐵) ∈ ℂ → ((𝐴 − 𝐵)𝐺(𝐴 − 𝐵)) = 0) |
| 55 | 41, 54 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐵)𝐺(𝐴 − 𝐵)) = 0) |
| 56 | 55 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (((𝐴 − 𝐵)𝐺(𝐴 − 𝐵)) · 𝑡) = (0 · 𝑡)) |
| 57 | 39 | mul02d 11459 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (0 · 𝑡) = 0) |
| 58 | 53, 56, 57 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡)) = 0) |
| 59 | 58 | negeqd 11502 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → -((𝐴 − 𝐵)𝐺((𝐴 − 𝐵) · 𝑡)) = -0) |
| 60 | | neg0 11555 |
. . . . . 6
⊢ -0 =
0 |
| 61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → -0 = 0) |
| 62 | 51, 59, 61 | 3eqtrd 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → (((𝐴 − 𝐵) · 𝑡)𝐺(𝐴 − 𝐵)) = 0) |
| 63 | 36, 48, 62 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵)))) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0) |
| 64 | 63 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0)) |
| 65 | 35, 64 | impbid 212 |
1
⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) |