Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   GIF version

Theorem sigarcol 41799
Description: Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarcol.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigarcol.b (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
sigarcol (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑡,𝑦,𝐴   𝑡,𝐵,𝑥,𝑦   𝑡,𝐶,𝑥,𝑦   𝑡,𝐺   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 sigarcol.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1174 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
42simp3d 1175 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
52simp1d 1173 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
63, 4, 53jca 1159 . . . . . 6 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
76adantr 473 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
8 sigarcol.b . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98adantr 473 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ¬ 𝐴 = 𝐵)
101sigarperm 41795 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
112, 10syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
121sigarperm 41795 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
136, 12syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1411, 13eqtrd 2833 . . . . . . 7 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1514eqeq1d 2801 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ((𝐶𝐵)𝐺(𝐴𝐵)) = 0))
1615biimpa 469 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵)𝐺(𝐴𝐵)) = 0)
171, 7, 9, 16sigardiv 41796 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ)
184, 3subcld 10684 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1918adantr 473 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐶𝐵) ∈ ℂ)
205, 3subcld 10684 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
2120adantr 473 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ∈ ℂ)
225adantr 473 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴 ∈ ℂ)
233adantr 473 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐵 ∈ ℂ)
249neqned 2978 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴𝐵)
2522, 23, 24subne0d 10693 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ≠ 0)
2619, 21, 25divcan1d 11094 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)) = (𝐶𝐵))
2726oveq2d 6894 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))) = (𝐵 + (𝐶𝐵)))
284adantr 473 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 ∈ ℂ)
2923, 28pncan3d 10687 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (𝐶𝐵)) = 𝐶)
3027, 29eqtr2d 2834 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
31 oveq1 6885 . . . . . 6 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝑡 · (𝐴𝐵)) = (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))
3231oveq2d 6894 . . . . 5 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐵 + (𝑡 · (𝐴𝐵))) = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
3332rspceeqv 3515 . . . 4 ((((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3417, 30, 33syl2anc 580 . . 3 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3534ex 402 . 2 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
36143ad2ant1 1164 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
37 simp3 1169 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3837oveq1d 6893 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = ((𝐵 + (𝑡 · (𝐴𝐵))) − 𝐵))
3933ad2ant1 1164 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐵 ∈ ℂ)
40 simp2 1168 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℝ)
4140recnd 10357 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℂ)
4253ad2ant1 1164 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐴 ∈ ℂ)
4342, 39subcld 10684 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐴𝐵) ∈ ℂ)
4441, 43mulcld 10349 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) ∈ ℂ)
4539, 44pncan2d 10686 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐵 + (𝑡 · (𝐴𝐵))) − 𝐵) = (𝑡 · (𝐴𝐵)))
4638, 45eqtrd 2833 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = (𝑡 · (𝐴𝐵)))
4746oveq1d 6893 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)))
4841, 43mulcomd 10350 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) = ((𝐴𝐵) · 𝑡))
4948oveq1d 6893 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
5047, 49eqtrd 2833 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
5143, 41mulcld 10349 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵) · 𝑡) ∈ ℂ)
521sigarac 41787 . . . . . 6 ((((𝐴𝐵) · 𝑡) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
5351, 43, 52syl2anc 580 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
541sigarls 41792 . . . . . . . 8 (((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
5543, 43, 40, 54syl3anc 1491 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
561sigarid 41793 . . . . . . . . 9 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5743, 56syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5857oveq1d 6893 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡) = (0 · 𝑡))
5941mul02d 10524 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (0 · 𝑡) = 0)
6055, 58, 593eqtrd 2837 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = 0)
6160negeqd 10566 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = -0)
62 neg0 10619 . . . . . 6 -0 = 0
6362a1i 11 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -0 = 0)
6453, 61, 633eqtrd 2837 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = 0)
6536, 50, 643eqtrd 2837 . . 3 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0)
6665rexlimdv3a 3214 . 2 (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0))
6735, 66impbid 204 1 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wrex 3090  cfv 6101  (class class class)co 6878  cmpt2 6880  cc 10222  cr 10223  0cc0 10224   + caddc 10227   · cmul 10229  cmin 10556  -cneg 10557   / cdiv 10976  ccj 14177  cim 14179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-2 11376  df-cj 14180  df-re 14181  df-im 14182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator