Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   GIF version

Theorem sigarcol 44380
Description: Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarcol.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigarcol.b (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
sigarcol (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑡,𝑦,𝐴   𝑡,𝐵,𝑥,𝑦   𝑡,𝐶,𝑥,𝑦   𝑡,𝐺   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 sigarcol.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1142 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
42simp3d 1143 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
52simp1d 1141 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
63, 4, 53jca 1127 . . . . . 6 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
76adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
8 sigarcol.b . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ¬ 𝐴 = 𝐵)
101sigarperm 44376 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
112, 10syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
121sigarperm 44376 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
136, 12syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1411, 13eqtrd 2778 . . . . . . 7 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1514eqeq1d 2740 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ((𝐶𝐵)𝐺(𝐴𝐵)) = 0))
1615biimpa 477 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵)𝐺(𝐴𝐵)) = 0)
171, 7, 9, 16sigardiv 44377 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ)
184, 3subcld 11332 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐶𝐵) ∈ ℂ)
205, 3subcld 11332 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
2120adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ∈ ℂ)
225adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴 ∈ ℂ)
233adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐵 ∈ ℂ)
249neqned 2950 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴𝐵)
2522, 23, 24subne0d 11341 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ≠ 0)
2619, 21, 25divcan1d 11752 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)) = (𝐶𝐵))
2726oveq2d 7291 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))) = (𝐵 + (𝐶𝐵)))
284adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 ∈ ℂ)
2923, 28pncan3d 11335 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (𝐶𝐵)) = 𝐶)
3027, 29eqtr2d 2779 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
31 oveq1 7282 . . . . . 6 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝑡 · (𝐴𝐵)) = (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))
3231oveq2d 7291 . . . . 5 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐵 + (𝑡 · (𝐴𝐵))) = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
3332rspceeqv 3575 . . . 4 ((((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3417, 30, 33syl2anc 584 . . 3 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3534ex 413 . 2 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
36143ad2ant1 1132 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
3733ad2ant1 1132 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐵 ∈ ℂ)
38 simp2 1136 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℝ)
3938recnd 11003 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℂ)
4053ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐴 ∈ ℂ)
4140, 37subcld 11332 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐴𝐵) ∈ ℂ)
4239, 41mulcld 10995 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) ∈ ℂ)
43 simp3 1137 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
4437, 42, 43mvrladdd 11388 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = (𝑡 · (𝐴𝐵)))
4544oveq1d 7290 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)))
4639, 41mulcomd 10996 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) = ((𝐴𝐵) · 𝑡))
4746oveq1d 7290 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4845, 47eqtrd 2778 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4941, 39mulcld 10995 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵) · 𝑡) ∈ ℂ)
501sigarac 44368 . . . . . 6 ((((𝐴𝐵) · 𝑡) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
5149, 41, 50syl2anc 584 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
521sigarls 44373 . . . . . . . 8 (((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
5341, 41, 38, 52syl3anc 1370 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
541sigarid 44374 . . . . . . . . 9 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5541, 54syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5655oveq1d 7290 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡) = (0 · 𝑡))
5739mul02d 11173 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (0 · 𝑡) = 0)
5853, 56, 573eqtrd 2782 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = 0)
5958negeqd 11215 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = -0)
60 neg0 11267 . . . . . 6 -0 = 0
6160a1i 11 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -0 = 0)
6251, 59, 613eqtrd 2782 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = 0)
6336, 48, 623eqtrd 2782 . . 3 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0)
6463rexlimdv3a 3215 . 2 (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0))
6535, 64impbid 211 1 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  ccj 14807  cim 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811  df-im 14812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator