Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   GIF version

Theorem sigarcol 46422
Description: Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarcol.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigarcol.b (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
sigarcol (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑡,𝑦,𝐴   𝑡,𝐵,𝑥,𝑦   𝑡,𝐶,𝑥,𝑦   𝑡,𝐺   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 sigarcol.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1140 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
42simp3d 1141 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
52simp1d 1139 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
63, 4, 53jca 1125 . . . . . 6 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
76adantr 479 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
8 sigarcol.b . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98adantr 479 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ¬ 𝐴 = 𝐵)
101sigarperm 46418 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
112, 10syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
121sigarperm 46418 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
136, 12syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1411, 13eqtrd 2765 . . . . . . 7 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1514eqeq1d 2727 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ((𝐶𝐵)𝐺(𝐴𝐵)) = 0))
1615biimpa 475 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵)𝐺(𝐴𝐵)) = 0)
171, 7, 9, 16sigardiv 46419 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ)
184, 3subcld 11617 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1918adantr 479 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐶𝐵) ∈ ℂ)
205, 3subcld 11617 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
2120adantr 479 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ∈ ℂ)
225adantr 479 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴 ∈ ℂ)
233adantr 479 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐵 ∈ ℂ)
249neqned 2936 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴𝐵)
2522, 23, 24subne0d 11626 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ≠ 0)
2619, 21, 25divcan1d 12038 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)) = (𝐶𝐵))
2726oveq2d 7439 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))) = (𝐵 + (𝐶𝐵)))
284adantr 479 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 ∈ ℂ)
2923, 28pncan3d 11620 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (𝐶𝐵)) = 𝐶)
3027, 29eqtr2d 2766 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
31 oveq1 7430 . . . . . 6 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝑡 · (𝐴𝐵)) = (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))
3231oveq2d 7439 . . . . 5 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐵 + (𝑡 · (𝐴𝐵))) = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
3332rspceeqv 3629 . . . 4 ((((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3417, 30, 33syl2anc 582 . . 3 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3534ex 411 . 2 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
36143ad2ant1 1130 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
3733ad2ant1 1130 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐵 ∈ ℂ)
38 simp2 1134 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℝ)
3938recnd 11288 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℂ)
4053ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐴 ∈ ℂ)
4140, 37subcld 11617 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐴𝐵) ∈ ℂ)
4239, 41mulcld 11280 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) ∈ ℂ)
43 simp3 1135 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
4437, 42, 43mvrladdd 11673 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = (𝑡 · (𝐴𝐵)))
4544oveq1d 7438 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)))
4639, 41mulcomd 11281 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) = ((𝐴𝐵) · 𝑡))
4746oveq1d 7438 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4845, 47eqtrd 2765 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4941, 39mulcld 11280 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵) · 𝑡) ∈ ℂ)
501sigarac 46410 . . . . . 6 ((((𝐴𝐵) · 𝑡) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
5149, 41, 50syl2anc 582 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
521sigarls 46415 . . . . . . . 8 (((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
5341, 41, 38, 52syl3anc 1368 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
541sigarid 46416 . . . . . . . . 9 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5541, 54syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5655oveq1d 7438 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡) = (0 · 𝑡))
5739mul02d 11458 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (0 · 𝑡) = 0)
5853, 56, 573eqtrd 2769 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = 0)
5958negeqd 11500 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = -0)
60 neg0 11552 . . . . . 6 -0 = 0
6160a1i 11 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -0 = 0)
6251, 59, 613eqtrd 2769 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = 0)
6336, 48, 623eqtrd 2769 . . 3 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0)
6463rexlimdv3a 3148 . 2 (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0))
6535, 64impbid 211 1 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  cfv 6553  (class class class)co 7423  cmpo 7425  cc 11152  cr 11153  0cc0 11154   + caddc 11157   · cmul 11159  cmin 11490  -cneg 11491   / cdiv 11917  ccj 15096  cim 15098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-2 12322  df-cj 15099  df-re 15100  df-im 15101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator