Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   GIF version

Theorem sigarcol 43115
Description: Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarcol.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigarcol.b (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
sigarcol (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑡,𝑦,𝐴   𝑡,𝐵,𝑥,𝑦   𝑡,𝐶,𝑥,𝑦   𝑡,𝐺   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 sigarcol.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1139 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
42simp3d 1140 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
52simp1d 1138 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
63, 4, 53jca 1124 . . . . . 6 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
76adantr 483 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
8 sigarcol.b . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98adantr 483 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ¬ 𝐴 = 𝐵)
101sigarperm 43111 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
112, 10syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
121sigarperm 43111 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
136, 12syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1411, 13eqtrd 2856 . . . . . . 7 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1514eqeq1d 2823 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ((𝐶𝐵)𝐺(𝐴𝐵)) = 0))
1615biimpa 479 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵)𝐺(𝐴𝐵)) = 0)
171, 7, 9, 16sigardiv 43112 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ)
184, 3subcld 10991 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1918adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐶𝐵) ∈ ℂ)
205, 3subcld 10991 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
2120adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ∈ ℂ)
225adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴 ∈ ℂ)
233adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐵 ∈ ℂ)
249neqned 3023 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴𝐵)
2522, 23, 24subne0d 11000 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ≠ 0)
2619, 21, 25divcan1d 11411 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)) = (𝐶𝐵))
2726oveq2d 7166 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))) = (𝐵 + (𝐶𝐵)))
284adantr 483 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 ∈ ℂ)
2923, 28pncan3d 10994 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (𝐶𝐵)) = 𝐶)
3027, 29eqtr2d 2857 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
31 oveq1 7157 . . . . . 6 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝑡 · (𝐴𝐵)) = (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))
3231oveq2d 7166 . . . . 5 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐵 + (𝑡 · (𝐴𝐵))) = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
3332rspceeqv 3637 . . . 4 ((((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3417, 30, 33syl2anc 586 . . 3 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3534ex 415 . 2 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
36143ad2ant1 1129 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
3733ad2ant1 1129 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐵 ∈ ℂ)
38 simp2 1133 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℝ)
3938recnd 10663 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℂ)
4053ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐴 ∈ ℂ)
4140, 37subcld 10991 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐴𝐵) ∈ ℂ)
4239, 41mulcld 10655 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) ∈ ℂ)
43 simp3 1134 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
4437, 42, 43mvrladdd 11047 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = (𝑡 · (𝐴𝐵)))
4544oveq1d 7165 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)))
4639, 41mulcomd 10656 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) = ((𝐴𝐵) · 𝑡))
4746oveq1d 7165 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4845, 47eqtrd 2856 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
4941, 39mulcld 10655 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵) · 𝑡) ∈ ℂ)
501sigarac 43103 . . . . . 6 ((((𝐴𝐵) · 𝑡) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
5149, 41, 50syl2anc 586 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
521sigarls 43108 . . . . . . . 8 (((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
5341, 41, 38, 52syl3anc 1367 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
541sigarid 43109 . . . . . . . . 9 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5541, 54syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5655oveq1d 7165 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡) = (0 · 𝑡))
5739mul02d 10832 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (0 · 𝑡) = 0)
5853, 56, 573eqtrd 2860 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = 0)
5958negeqd 10874 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = -0)
60 neg0 10926 . . . . . 6 -0 = 0
6160a1i 11 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -0 = 0)
6251, 59, 613eqtrd 2860 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = 0)
6336, 48, 623eqtrd 2860 . . 3 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0)
6463rexlimdv3a 3286 . 2 (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0))
6535, 64impbid 214 1 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  cfv 6349  (class class class)co 7150  cmpo 7152  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865   / cdiv 11291  ccj 14449  cim 14451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-cj 14452  df-re 14453  df-im 14454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator