MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjdiv Structured version   Visualization version   GIF version

Theorem cjdiv 14751
Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
cjdiv ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))

Proof of Theorem cjdiv
StepHypRef Expression
1 divcl 11520 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
2 cjcl 14692 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
31, 2syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
4 simp2 1139 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
5 cjcl 14692 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
64, 5syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ∈ ℂ)
7 simp3 1140 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
8 cjne0 14750 . . . . 5 (𝐵 ∈ ℂ → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
94, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
107, 9mpbid 235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ≠ 0)
113, 6, 10divcan4d 11638 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = (∗‘(𝐴 / 𝐵)))
12 cjmul 14729 . . . . 5 (((𝐴 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
131, 4, 12syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
14 divcan1 11523 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1514fveq2d 6739 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = (∗‘𝐴))
1613, 15eqtr3d 2780 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) = (∗‘𝐴))
1716oveq1d 7246 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
1811, 17eqtr3d 2780 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2111  wne 2941  cfv 6397  (class class class)co 7231  cc 10751  0cc0 10753   · cmul 10758   / cdiv 11513  ccj 14683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-po 5482  df-so 5483  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-2 11917  df-cj 14686  df-re 14687  df-im 14688
This theorem is referenced by:  cjdivi  14778  cjdivd  14810  dipcj  28819
  Copyright terms: Public domain W3C validator