MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjdiv Structured version   Visualization version   GIF version

Theorem cjdiv 14515
Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
cjdiv ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))

Proof of Theorem cjdiv
StepHypRef Expression
1 divcl 11293 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
2 cjcl 14456 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
31, 2syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
4 simp2 1134 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
5 cjcl 14456 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
64, 5syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ∈ ℂ)
7 simp3 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
8 cjne0 14514 . . . . 5 (𝐵 ∈ ℂ → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
94, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
107, 9mpbid 235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ≠ 0)
113, 6, 10divcan4d 11411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = (∗‘(𝐴 / 𝐵)))
12 cjmul 14493 . . . . 5 (((𝐴 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
131, 4, 12syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
14 divcan1 11296 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1514fveq2d 6649 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = (∗‘𝐴))
1613, 15eqtr3d 2835 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) = (∗‘𝐴))
1716oveq1d 7150 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
1811, 17eqtr3d 2835 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531   / cdiv 11286  ccj 14447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451  df-im 14452
This theorem is referenced by:  cjdivi  14542  cjdivd  14574  dipcj  28497
  Copyright terms: Public domain W3C validator