MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Structured version   Visualization version   GIF version

Theorem dipcj 28501
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcj ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2801 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2801 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2801 . . . 4 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 28494 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4))
76fveq2d 6653 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
81, 2, 3, 4, 5ipval2 28494 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
983com23 1123 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101, 2, 3, 4, 5ipval2lem3 28492 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℝ)
1110recnd 10662 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℂ)
12 neg1cn 11743 . . . . . . . 8 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 28493 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 690 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1511, 14subcld 10990 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
16 ax-icn 10589 . . . . . . 7 i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 28493 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 690 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
19 negicn 10880 . . . . . . . . 9 -i ∈ ℂ
201, 2, 3, 4, 5ipval2lem4 28493 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2119, 20mpan2 690 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2218, 21subcld 10990 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
23 mulcl 10614 . . . . . . 7 ((i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2416, 22, 23sylancr 590 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2515, 24addcld 10653 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ)
26 4cn 11714 . . . . . 6 4 ∈ ℂ
27 4ne0 11737 . . . . . 6 4 ≠ 0
28 cjdiv 14519 . . . . . 6 (((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
2926, 27, 28mp3an23 1450 . . . . 5 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
3025, 29syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
31 4re 11713 . . . . . . 7 4 ∈ ℝ
32 cjre 14494 . . . . . . 7 (4 ∈ ℝ → (∗‘4) = 4)
3331, 32ax-mp 5 . . . . . 6 (∗‘4) = 4
3433oveq2i 7150 . . . . 5 ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4)
351, 2, 3, 4, 5ipval2lem2 28491 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3612, 35mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3710, 36resubcld 11061 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
381, 2, 3, 4, 5ipval2lem2 28491 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3916, 38mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
401, 2, 3, 4, 5ipval2lem2 28491 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4119, 40mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4239, 41resubcld 11061 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
43 cjreim 14515 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4437, 42, 43syl2anc 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
45 submul2 11073 . . . . . . . . 9 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4616, 45mp3an2 1446 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4715, 22, 46syl2anc 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
481, 2nvcom 28408 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( +𝑣𝑈)𝐵) = (𝐵( +𝑣𝑈)𝐴))
4948fveq2d 6653 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵)) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴)))
5049oveq1d 7154 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2))
511, 2, 3, 4nvdif 28453 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
5251oveq1d 7154 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2))
5350, 52oveq12d 7157 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)))
5418, 21negsubdi2d 11006 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)))
551, 2, 3, 4nvpi 28454 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
56553com23 1123 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
5756eqcomd 2807 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
5857oveq1d 7154 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
591, 2, 3, 4nvpi 28454 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
6059oveq1d 7154 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))
6158, 60oveq12d 7157 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6254, 61eqtrd 2836 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6362oveq2d 7155 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) = (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))))
6453, 63oveq12d 7157 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6544, 47, 643eqtrd 2840 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6665oveq1d 7154 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6734, 66syl5eq 2848 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6830, 67eqtrd 2836 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
699, 68eqtr4d 2839 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
707, 69eqtr4d 2839 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  wne 2990  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531  ici 10532   + caddc 10533   · cmul 10535  cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  4c4 11686  cexp 13429  ccj 14451  NrmCVeccnv 28371   +𝑣 cpv 28372  BaseSetcba 28373   ·𝑠OLD cns 28374  normCVcnmcv 28377  ·𝑖OLDcdip 28487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-grpo 28280  df-gid 28281  df-ginv 28282  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-nmcv 28387  df-dip 28488
This theorem is referenced by:  ipipcj  28502  diporthcom  28503  dip0l  28505  ipasslem10  28626  dipdi  28630  dipassr  28633  dipsubdi  28636  siii  28640  hlipcj  28698
  Copyright terms: Public domain W3C validator