Proof of Theorem dipcj
| Step | Hyp | Ref
| Expression |
| 1 | | ipcl.1 |
. . . 4
⊢ 𝑋 = (BaseSet‘𝑈) |
| 2 | | eqid 2737 |
. . . 4
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
| 3 | | eqid 2737 |
. . . 4
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
| 4 | | eqid 2737 |
. . . 4
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
| 5 | | ipcl.7 |
. . . 4
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 6 | 1, 2, 3, 4, 5 | ipval2 30726 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) |
| 7 | 6 | fveq2d 6910 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) =
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4))) |
| 8 | 1, 2, 3, 4, 5 | ipval2 30726 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) = ((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
| 9 | 8 | 3com23 1127 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐴) = ((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
| 10 | 1, 2, 3, 4, 5 | ipval2lem3 30724 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) ∈ ℝ) |
| 11 | 10 | recnd 11289 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) ∈ ℂ) |
| 12 | | neg1cn 12380 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
| 13 | 1, 2, 3, 4, 5 | ipval2lem4 30725 |
. . . . . . . 8
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -1 ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 14 | 12, 13 | mpan2 691 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 15 | 11, 14 | subcld 11620 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℂ) |
| 16 | | ax-icn 11214 |
. . . . . . 7
⊢ i ∈
ℂ |
| 17 | 1, 2, 3, 4, 5 | ipval2lem4 30725 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 18 | 16, 17 | mpan2 691 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 19 | | negicn 11509 |
. . . . . . . . 9
⊢ -i ∈
ℂ |
| 20 | 1, 2, 3, 4, 5 | ipval2lem4 30725 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 21 | 19, 20 | mpan2 691 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
| 22 | 18, 21 | subcld 11620 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℂ) |
| 23 | | mulcl 11239 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) → (i
· ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) ∈
ℂ) |
| 24 | 16, 22, 23 | sylancr 587 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) ∈
ℂ) |
| 25 | 15, 24 | addcld 11280 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈
ℂ) |
| 26 | | 4cn 12351 |
. . . . . 6
⊢ 4 ∈
ℂ |
| 27 | | 4ne0 12374 |
. . . . . 6
⊢ 4 ≠
0 |
| 28 | | cjdiv 15203 |
. . . . . 6
⊢
(((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈
ℂ ∧ 4 ≠ 0) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
| 29 | 26, 27, 28 | mp3an23 1455 |
. . . . 5
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈ ℂ →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
| 30 | 25, 29 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
| 31 | | 4re 12350 |
. . . . . . 7
⊢ 4 ∈
ℝ |
| 32 | | cjre 15178 |
. . . . . . 7
⊢ (4 ∈
ℝ → (∗‘4) = 4) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . 6
⊢
(∗‘4) = 4 |
| 34 | 33 | oveq2i 7442 |
. . . . 5
⊢
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / (∗‘4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / 4) |
| 35 | 1, 2, 3, 4, 5 | ipval2lem2 30723 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -1 ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 36 | 12, 35 | mpan2 691 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 37 | 10, 36 | resubcld 11691 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℝ) |
| 38 | 1, 2, 3, 4, 5 | ipval2lem2 30723 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 39 | 16, 38 | mpan2 691 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 40 | 1, 2, 3, 4, 5 | ipval2lem2 30723 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 41 | 19, 40 | mpan2 691 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
| 42 | 39, 41 | resubcld 11691 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℝ) |
| 43 | | cjreim 15199 |
. . . . . . . 8
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℝ ∧
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℝ) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
| 44 | 37, 42, 43 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
| 45 | | submul2 11703 |
. . . . . . . . 9
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈
ℂ ∧ ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) →
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
| 46 | 16, 45 | mp3an2 1451 |
. . . . . . . 8
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) →
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
| 47 | 15, 22, 46 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
| 48 | 1, 2 | nvcom 30640 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝐵) = (𝐵( +𝑣 ‘𝑈)𝐴)) |
| 49 | 48 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵)) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))) |
| 50 | 49 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2)) |
| 51 | 1, 2, 3, 4 | nvdif 30685 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))) |
| 52 | 51 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
| 53 | 50, 52 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
| 54 | 18, 21 | negsubdi2d 11636 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → -((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) |
| 55 | 1, 2, 3, 4 | nvpi 30686 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))) |
| 56 | 55 | 3com23 1127 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))) |
| 57 | 56 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))) |
| 58 | 57 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
| 59 | 1, 2, 3, 4 | nvpi 30686 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))) |
| 60 | 59 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
| 61 | 58, 60 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
| 62 | 54, 61 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → -((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) = (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) |
| 64 | 53, 63 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))))) |
| 65 | 44, 47, 64 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))))) |
| 66 | 65 | oveq1d 7446 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / 4) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
| 67 | 34, 66 | eqtrid 2789 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / (∗‘4)) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
| 68 | 30, 67 | eqtrd 2777 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
| 69 | 9, 68 | eqtr4d 2780 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐴) =
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4))) |
| 70 | 7, 69 | eqtr4d 2780 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) |