MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Structured version   Visualization version   GIF version

Theorem dipcj 30643
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcj ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2729 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2729 . . . 4 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 30636 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4))
76fveq2d 6862 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
81, 2, 3, 4, 5ipval2 30636 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
983com23 1126 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101, 2, 3, 4, 5ipval2lem3 30634 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℝ)
1110recnd 11202 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℂ)
12 neg1cn 12171 . . . . . . . 8 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 30635 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 691 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11533 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
16 ax-icn 11127 . . . . . . 7 i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 30635 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
19 negicn 11422 . . . . . . . . 9 -i ∈ ℂ
201, 2, 3, 4, 5ipval2lem4 30635 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2119, 20mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2218, 21subcld 11533 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
23 mulcl 11152 . . . . . . 7 ((i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2416, 22, 23sylancr 587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2515, 24addcld 11193 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ)
26 4cn 12271 . . . . . 6 4 ∈ ℂ
27 4ne0 12294 . . . . . 6 4 ≠ 0
28 cjdiv 15130 . . . . . 6 (((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
2926, 27, 28mp3an23 1455 . . . . 5 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
3025, 29syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
31 4re 12270 . . . . . . 7 4 ∈ ℝ
32 cjre 15105 . . . . . . 7 (4 ∈ ℝ → (∗‘4) = 4)
3331, 32ax-mp 5 . . . . . 6 (∗‘4) = 4
3433oveq2i 7398 . . . . 5 ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4)
351, 2, 3, 4, 5ipval2lem2 30633 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3612, 35mpan2 691 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3710, 36resubcld 11606 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
381, 2, 3, 4, 5ipval2lem2 30633 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3916, 38mpan2 691 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
401, 2, 3, 4, 5ipval2lem2 30633 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4119, 40mpan2 691 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4239, 41resubcld 11606 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
43 cjreim 15126 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4437, 42, 43syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
45 submul2 11618 . . . . . . . . 9 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4616, 45mp3an2 1451 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4715, 22, 46syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
481, 2nvcom 30550 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( +𝑣𝑈)𝐵) = (𝐵( +𝑣𝑈)𝐴))
4948fveq2d 6862 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵)) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴)))
5049oveq1d 7402 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2))
511, 2, 3, 4nvdif 30595 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
5251oveq1d 7402 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2))
5350, 52oveq12d 7405 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)))
5418, 21negsubdi2d 11549 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)))
551, 2, 3, 4nvpi 30596 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
56553com23 1126 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
5756eqcomd 2735 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
5857oveq1d 7402 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
591, 2, 3, 4nvpi 30596 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
6059oveq1d 7402 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))
6158, 60oveq12d 7405 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6254, 61eqtrd 2764 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6362oveq2d 7403 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) = (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))))
6453, 63oveq12d 7405 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6544, 47, 643eqtrd 2768 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6665oveq1d 7402 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6734, 66eqtrid 2776 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6830, 67eqtrd 2764 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
699, 68eqtr4d 2767 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
707, 69eqtr4d 2767 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  4c4 12243  cexp 14026  ccj 15062  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516  normCVcnmcv 30519  ·𝑖OLDcdip 30629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-dip 30630
This theorem is referenced by:  ipipcj  30644  diporthcom  30645  dip0l  30647  ipasslem10  30768  dipdi  30772  dipassr  30775  dipsubdi  30778  siii  30782  hlipcj  30840
  Copyright terms: Public domain W3C validator