MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Structured version   Visualization version   GIF version

Theorem dipcj 30746
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcj ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2740 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2740 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2740 . . . 4 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 30739 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4))
76fveq2d 6924 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
81, 2, 3, 4, 5ipval2 30739 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
983com23 1126 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101, 2, 3, 4, 5ipval2lem3 30737 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℝ)
1110recnd 11318 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℂ)
12 neg1cn 12407 . . . . . . . 8 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 30738 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 690 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11647 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
16 ax-icn 11243 . . . . . . 7 i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 30738 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 690 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
19 negicn 11537 . . . . . . . . 9 -i ∈ ℂ
201, 2, 3, 4, 5ipval2lem4 30738 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2119, 20mpan2 690 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2218, 21subcld 11647 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
23 mulcl 11268 . . . . . . 7 ((i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2416, 22, 23sylancr 586 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2515, 24addcld 11309 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ)
26 4cn 12378 . . . . . 6 4 ∈ ℂ
27 4ne0 12401 . . . . . 6 4 ≠ 0
28 cjdiv 15213 . . . . . 6 (((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
2926, 27, 28mp3an23 1453 . . . . 5 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
3025, 29syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
31 4re 12377 . . . . . . 7 4 ∈ ℝ
32 cjre 15188 . . . . . . 7 (4 ∈ ℝ → (∗‘4) = 4)
3331, 32ax-mp 5 . . . . . 6 (∗‘4) = 4
3433oveq2i 7459 . . . . 5 ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4)
351, 2, 3, 4, 5ipval2lem2 30736 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3612, 35mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3710, 36resubcld 11718 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
381, 2, 3, 4, 5ipval2lem2 30736 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3916, 38mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
401, 2, 3, 4, 5ipval2lem2 30736 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4119, 40mpan2 690 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4239, 41resubcld 11718 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
43 cjreim 15209 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4437, 42, 43syl2anc 583 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
45 submul2 11730 . . . . . . . . 9 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4616, 45mp3an2 1449 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4715, 22, 46syl2anc 583 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
481, 2nvcom 30653 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( +𝑣𝑈)𝐵) = (𝐵( +𝑣𝑈)𝐴))
4948fveq2d 6924 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵)) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴)))
5049oveq1d 7463 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2))
511, 2, 3, 4nvdif 30698 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
5251oveq1d 7463 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2))
5350, 52oveq12d 7466 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)))
5418, 21negsubdi2d 11663 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)))
551, 2, 3, 4nvpi 30699 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
56553com23 1126 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
5756eqcomd 2746 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
5857oveq1d 7463 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
591, 2, 3, 4nvpi 30699 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
6059oveq1d 7463 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))
6158, 60oveq12d 7466 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6254, 61eqtrd 2780 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6362oveq2d 7464 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) = (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))))
6453, 63oveq12d 7466 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6544, 47, 643eqtrd 2784 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6665oveq1d 7463 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6734, 66eqtrid 2792 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6830, 67eqtrd 2780 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
699, 68eqtr4d 2783 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
707, 69eqtr4d 2783 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  4c4 12350  cexp 14112  ccj 15145  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  normCVcnmcv 30622  ·𝑖OLDcdip 30732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-dip 30733
This theorem is referenced by:  ipipcj  30747  diporthcom  30748  dip0l  30750  ipasslem10  30871  dipdi  30875  dipassr  30878  dipsubdi  30881  siii  30885  hlipcj  30943
  Copyright terms: Public domain W3C validator