Proof of Theorem dipcj
Step | Hyp | Ref
| Expression |
1 | | ipcl.1 |
. . . 4
⊢ 𝑋 = (BaseSet‘𝑈) |
2 | | eqid 2738 |
. . . 4
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
3 | | eqid 2738 |
. . . 4
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
4 | | eqid 2738 |
. . . 4
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
5 | | ipcl.7 |
. . . 4
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
6 | 1, 2, 3, 4, 5 | ipval2 29069 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) |
7 | 6 | fveq2d 6778 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) =
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4))) |
8 | 1, 2, 3, 4, 5 | ipval2 29069 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) = ((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
9 | 8 | 3com23 1125 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐴) = ((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
10 | 1, 2, 3, 4, 5 | ipval2lem3 29067 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) ∈ ℝ) |
11 | 10 | recnd 11003 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) ∈ ℂ) |
12 | | neg1cn 12087 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
13 | 1, 2, 3, 4, 5 | ipval2lem4 29068 |
. . . . . . . 8
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -1 ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
14 | 12, 13 | mpan2 688 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
15 | 11, 14 | subcld 11332 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℂ) |
16 | | ax-icn 10930 |
. . . . . . 7
⊢ i ∈
ℂ |
17 | 1, 2, 3, 4, 5 | ipval2lem4 29068 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
18 | 16, 17 | mpan2 688 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
19 | | negicn 11222 |
. . . . . . . . 9
⊢ -i ∈
ℂ |
20 | 1, 2, 3, 4, 5 | ipval2lem4 29068 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
21 | 19, 20 | mpan2 688 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℂ) |
22 | 18, 21 | subcld 11332 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℂ) |
23 | | mulcl 10955 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) → (i
· ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) ∈
ℂ) |
24 | 16, 22, 23 | sylancr 587 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) ∈
ℂ) |
25 | 15, 24 | addcld 10994 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈
ℂ) |
26 | | 4cn 12058 |
. . . . . 6
⊢ 4 ∈
ℂ |
27 | | 4ne0 12081 |
. . . . . 6
⊢ 4 ≠
0 |
28 | | cjdiv 14875 |
. . . . . 6
⊢
(((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈
ℂ ∧ 4 ≠ 0) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
29 | 26, 27, 28 | mp3an23 1452 |
. . . . 5
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) ∈ ℂ →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
30 | 25, 29 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) /
(∗‘4))) |
31 | | 4re 12057 |
. . . . . . 7
⊢ 4 ∈
ℝ |
32 | | cjre 14850 |
. . . . . . 7
⊢ (4 ∈
ℝ → (∗‘4) = 4) |
33 | 31, 32 | ax-mp 5 |
. . . . . 6
⊢
(∗‘4) = 4 |
34 | 33 | oveq2i 7286 |
. . . . 5
⊢
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / (∗‘4)) =
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / 4) |
35 | 1, 2, 3, 4, 5 | ipval2lem2 29066 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -1 ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
36 | 12, 35 | mpan2 688 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
37 | 10, 36 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℝ) |
38 | 1, 2, 3, 4, 5 | ipval2lem2 29066 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
39 | 16, 38 | mpan2 688 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
40 | 1, 2, 3, 4, 5 | ipval2lem2 29066 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ -i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
41 | 19, 40 | mpan2 688 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) ∈ ℝ) |
42 | 39, 41 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈
ℝ) |
43 | | cjreim 14871 |
. . . . . . . 8
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℝ ∧
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℝ) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
44 | 37, 42, 43 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
45 | | submul2 11415 |
. . . . . . . . 9
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈
ℂ ∧ ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) →
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
46 | 16, 45 | mp3an2 1448 |
. . . . . . . 8
⊢
((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ ∧
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) ∈ ℂ) →
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
47 | 15, 22, 46 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) − (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) |
48 | 1, 2 | nvcom 28983 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝐵) = (𝐵( +𝑣 ‘𝑈)𝐴)) |
49 | 48 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵)) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))) |
50 | 49 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2)) |
51 | 1, 2, 3, 4 | nvdif 29028 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))) |
52 | 51 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
53 | 50, 52 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
54 | 18, 21 | negsubdi2d 11348 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → -((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) |
55 | 1, 2, 3, 4 | nvpi 29029 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))) |
56 | 55 | 3com23 1125 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))) |
57 | 56 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))) |
58 | 57 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
59 | 1, 2, 3, 4 | nvpi 29029 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵))) = ((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))) |
60 | 59 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) =
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
61 | 58, 60 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
62 | 54, 61 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → -((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)) =
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
63 | 62 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))) = (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) |
64 | 53, 63 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
-((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) =
(((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))))) |
65 | 44, 47, 64 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) =
(((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))))) |
66 | 65 | oveq1d 7290 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / 4) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
67 | 34, 66 | eqtrid 2790 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
((∗‘(((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2))))) / (∗‘4)) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
68 | 30, 67 | eqtrd 2778 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) →
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4)) =
((((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)𝐴))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) −
(((normCV‘𝑈)‘(𝐵( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
69 | 9, 68 | eqtr4d 2781 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐴) =
(∗‘((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝐵))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐵)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐵)))↑2)))) / 4))) |
70 | 7, 69 | eqtr4d 2781 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) |