MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Structured version   Visualization version   GIF version

Theorem dipcj 29076
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipcj ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2738 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2738 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2738 . . . 4 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 29069 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4))
76fveq2d 6778 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
81, 2, 3, 4, 5ipval2 29069 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
983com23 1125 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101, 2, 3, 4, 5ipval2lem3 29067 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℝ)
1110recnd 11003 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) ∈ ℂ)
12 neg1cn 12087 . . . . . . . 8 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 29068 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 688 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11332 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
16 ax-icn 10930 . . . . . . 7 i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 29068 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 688 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
19 negicn 11222 . . . . . . . . 9 -i ∈ ℂ
201, 2, 3, 4, 5ipval2lem4 29068 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2119, 20mpan2 688 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℂ)
2218, 21subcld 11332 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ)
23 mulcl 10955 . . . . . . 7 ((i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2416, 22, 23sylancr 587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) ∈ ℂ)
2515, 24addcld 10994 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ)
26 4cn 12058 . . . . . 6 4 ∈ ℂ
27 4ne0 12081 . . . . . 6 4 ≠ 0
28 cjdiv 14875 . . . . . 6 (((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
2926, 27, 28mp3an23 1452 . . . . 5 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) ∈ ℂ → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
3025, 29syl 17 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)))
31 4re 12057 . . . . . . 7 4 ∈ ℝ
32 cjre 14850 . . . . . . 7 (4 ∈ ℝ → (∗‘4) = 4)
3331, 32ax-mp 5 . . . . . 6 (∗‘4) = 4
3433oveq2i 7286 . . . . 5 ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4)
351, 2, 3, 4, 5ipval2lem2 29066 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3612, 35mpan2 688 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3710, 36resubcld 11403 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
381, 2, 3, 4, 5ipval2lem2 29066 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
3916, 38mpan2 688 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
401, 2, 3, 4, 5ipval2lem2 29066 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4119, 40mpan2 688 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) ∈ ℝ)
4239, 41resubcld 11403 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ)
43 cjreim 14871 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℝ) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4437, 42, 43syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
45 submul2 11415 . . . . . . . . 9 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ i ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4616, 45mp3an2 1448 . . . . . . . 8 ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ ∧ ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) ∈ ℂ) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
4715, 22, 46syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) − (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))))
481, 2nvcom 28983 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( +𝑣𝑈)𝐵) = (𝐵( +𝑣𝑈)𝐴))
4948fveq2d 6778 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵)) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴)))
5049oveq1d 7290 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2))
511, 2, 3, 4nvdif 29028 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
5251oveq1d 7290 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2))
5350, 52oveq12d 7293 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)))
5418, 21negsubdi2d 11348 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)))
551, 2, 3, 4nvpi 29029 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
56553com23 1125 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))))
5756eqcomd 2744 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
5857oveq1d 7290 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
591, 2, 3, 4nvpi 29029 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵))) = ((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
6059oveq1d 7290 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) = (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))
6158, 60oveq12d 7293 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6254, 61eqtrd 2778 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)) = ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))
6362oveq2d 7291 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))) = (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))))
6453, 63oveq12d 7293 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · -((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6544, 47, 643eqtrd 2782 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) = (((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
6665oveq1d 7290 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / 4) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6734, 66eqtrid 2790 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((∗‘(((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2))))) / (∗‘4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
6830, 67eqtrd 2778 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)) = ((((((normCV𝑈)‘(𝐵( +𝑣𝑈)𝐴))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · ((((normCV𝑈)‘(𝐵( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − (((normCV𝑈)‘(𝐵( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
699, 68eqtr4d 2781 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑃𝐴) = (∗‘((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝐵))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐵)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐵)))↑2)))) / 4)))
707, 69eqtr4d 2781 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  4c4 12030  cexp 13782  ccj 14807  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  normCVcnmcv 28952  ·𝑖OLDcdip 29062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-dip 29063
This theorem is referenced by:  ipipcj  29077  diporthcom  29078  dip0l  29080  ipasslem10  29201  dipdi  29205  dipassr  29208  dipsubdi  29211  siii  29215  hlipcj  29273
  Copyright terms: Public domain W3C validator