![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrecnv | Structured version Visualization version GIF version |
Description: The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 12969. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrecnv.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
Ref | Expression |
---|---|
cnrecnv | ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrecnv.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | 1 | cnref1o 12969 | . . . . . 6 ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ |
3 | f1ocnv 6846 | . . . . . 6 ⊢ (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → ◡𝐹:ℂ–1-1-onto→(ℝ × ℝ)) | |
4 | f1of 6834 | . . . . . 6 ⊢ (◡𝐹:ℂ–1-1-onto→(ℝ × ℝ) → ◡𝐹:ℂ⟶(ℝ × ℝ)) | |
5 | 2, 3, 4 | mp2b 10 | . . . . 5 ⊢ ◡𝐹:ℂ⟶(ℝ × ℝ) |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → ◡𝐹:ℂ⟶(ℝ × ℝ)) |
7 | 6 | feqmptd 6961 | . . 3 ⊢ (⊤ → ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧))) |
8 | 7 | mptru 1549 | . 2 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) |
9 | df-ov 7412 | . . . . . . 7 ⊢ ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) | |
10 | recl 15057 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ) | |
11 | imcl 15058 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ) | |
12 | oveq1 7416 | . . . . . . . . 9 ⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦))) | |
13 | oveq2 7417 | . . . . . . . . . 10 ⊢ (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧))) | |
14 | 13 | oveq2d 7425 | . . . . . . . . 9 ⊢ (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
15 | ovex 7442 | . . . . . . . . 9 ⊢ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ V | |
16 | 12, 14, 1, 15 | ovmpo 7568 | . . . . . . . 8 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
17 | 10, 11, 16 | syl2anc 585 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
18 | 9, 17 | eqtr3id 2787 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
19 | replim 15063 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) | |
20 | 18, 19 | eqtr4d 2776 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧) |
21 | 20 | fveq2d 6896 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (◡𝐹‘𝑧)) |
22 | 10, 11 | opelxpd 5716 | . . . . 5 ⊢ (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) |
23 | f1ocnvfv1 7274 | . . . . 5 ⊢ ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (◡𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) | |
24 | 2, 22, 23 | sylancr 588 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) |
25 | 21, 24 | eqtr3d 2775 | . . 3 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) |
26 | 25 | mpteq2ia 5252 | . 2 ⊢ (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) |
27 | 8, 26 | eqtri 2761 | 1 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ⟨cop 4635 ↦ cmpt 5232 × cxp 5675 ◡ccnv 5676 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 ℂcc 11108 ℝcr 11109 ici 11112 + caddc 11113 · cmul 11115 ℜcre 15044 ℑcim 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-2 12275 df-cj 15046 df-re 15047 df-im 15048 |
This theorem is referenced by: cnrehmeo 24469 cnheiborlem 24470 mbfimaopnlem 25172 gg-cnrehmeo 35171 |
Copyright terms: Public domain | W3C validator |