![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrecnv | Structured version Visualization version GIF version |
Description: The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 13050. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrecnv.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
Ref | Expression |
---|---|
cnrecnv | ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrecnv.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | 1 | cnref1o 13050 | . . . . . 6 ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ |
3 | f1ocnv 6874 | . . . . . 6 ⊢ (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → ◡𝐹:ℂ–1-1-onto→(ℝ × ℝ)) | |
4 | f1of 6862 | . . . . . 6 ⊢ (◡𝐹:ℂ–1-1-onto→(ℝ × ℝ) → ◡𝐹:ℂ⟶(ℝ × ℝ)) | |
5 | 2, 3, 4 | mp2b 10 | . . . . 5 ⊢ ◡𝐹:ℂ⟶(ℝ × ℝ) |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → ◡𝐹:ℂ⟶(ℝ × ℝ)) |
7 | 6 | feqmptd 6990 | . . 3 ⊢ (⊤ → ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧))) |
8 | 7 | mptru 1544 | . 2 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) |
9 | df-ov 7451 | . . . . . . 7 ⊢ ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
10 | recl 15159 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ) | |
11 | imcl 15160 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ) | |
12 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦))) | |
13 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧))) | |
14 | 13 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
15 | ovex 7481 | . . . . . . . . 9 ⊢ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ V | |
16 | 12, 14, 1, 15 | ovmpo 7610 | . . . . . . . 8 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
17 | 10, 11, 16 | syl2anc 583 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
18 | 9, 17 | eqtr3id 2794 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
19 | replim 15165 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) | |
20 | 18, 19 | eqtr4d 2783 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = 𝑧) |
21 | 20 | fveq2d 6924 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = (◡𝐹‘𝑧)) |
22 | 10, 11 | opelxpd 5739 | . . . . 5 ⊢ (𝑧 ∈ ℂ → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) |
23 | f1ocnvfv1 7312 | . . . . 5 ⊢ ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
24 | 2, 22, 23 | sylancr 586 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
25 | 21, 24 | eqtr3d 2782 | . . 3 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘𝑧) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
26 | 25 | mpteq2ia 5269 | . 2 ⊢ (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
27 | 8, 26 | eqtri 2768 | 1 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 〈cop 4654 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 ℝcr 11183 ici 11186 + caddc 11187 · cmul 11189 ℜcre 15146 ℑcim 15147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 |
This theorem is referenced by: cnrehmeo 25003 cnrehmeoOLD 25004 cnheiborlem 25005 mbfimaopnlem 25709 |
Copyright terms: Public domain | W3C validator |