![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrecnv | Structured version Visualization version GIF version |
Description: The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 12030. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrecnv.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
Ref | Expression |
---|---|
cnrecnv | ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrecnv.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | 1 | cnref1o 12030 | . . . . . 6 ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ |
3 | f1ocnv 6290 | . . . . . 6 ⊢ (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → ◡𝐹:ℂ–1-1-onto→(ℝ × ℝ)) | |
4 | f1of 6278 | . . . . . 6 ⊢ (◡𝐹:ℂ–1-1-onto→(ℝ × ℝ) → ◡𝐹:ℂ⟶(ℝ × ℝ)) | |
5 | 2, 3, 4 | mp2b 10 | . . . . 5 ⊢ ◡𝐹:ℂ⟶(ℝ × ℝ) |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → ◡𝐹:ℂ⟶(ℝ × ℝ)) |
7 | 6 | feqmptd 6391 | . . 3 ⊢ (⊤ → ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧))) |
8 | 7 | trud 1641 | . 2 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) |
9 | df-ov 6796 | . . . . . . 7 ⊢ ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
10 | recl 14058 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ) | |
11 | imcl 14059 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ) | |
12 | oveq1 6800 | . . . . . . . . 9 ⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦))) | |
13 | oveq2 6801 | . . . . . . . . . 10 ⊢ (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧))) | |
14 | 13 | oveq2d 6809 | . . . . . . . . 9 ⊢ (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
15 | ovex 6823 | . . . . . . . . 9 ⊢ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ V | |
16 | 12, 14, 1, 15 | ovmpt2 6943 | . . . . . . . 8 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
17 | 10, 11, 16 | syl2anc 573 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
18 | 9, 17 | syl5eqr 2819 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
19 | replim 14064 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) | |
20 | 18, 19 | eqtr4d 2808 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = 𝑧) |
21 | 20 | fveq2d 6336 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = (◡𝐹‘𝑧)) |
22 | opelxpi 5288 | . . . . . 6 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) | |
23 | 10, 11, 22 | syl2anc 573 | . . . . 5 ⊢ (𝑧 ∈ ℂ → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) |
24 | f1ocnvfv1 6675 | . . . . 5 ⊢ ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
25 | 2, 23, 24 | sylancr 575 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
26 | 21, 25 | eqtr3d 2807 | . . 3 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘𝑧) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
27 | 26 | mpteq2ia 4874 | . 2 ⊢ (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
28 | 8, 27 | eqtri 2793 | 1 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 〈cop 4322 ↦ cmpt 4863 × cxp 5247 ◡ccnv 5248 ⟶wf 6027 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 ℂcc 10136 ℝcr 10137 ici 10140 + caddc 10141 · cmul 10143 ℜcre 14045 ℑcim 14046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-2 11281 df-cj 14047 df-re 14048 df-im 14049 |
This theorem is referenced by: cnrehmeo 22972 cnheiborlem 22973 mbfimaopnlem 23642 |
Copyright terms: Public domain | W3C validator |