MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrecnv Structured version   Visualization version   GIF version

Theorem cnrecnv 15115
Description: The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 12970. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnrecnv 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Distinct variable groups:   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
21cnref1o 12970 . . . . . 6 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
3 f1ocnv 6838 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:ℂ–1-1-onto→(ℝ × ℝ))
4 f1of 6826 . . . . . 6 (𝐹:ℂ–1-1-onto→(ℝ × ℝ) → 𝐹:ℂ⟶(ℝ × ℝ))
52, 3, 4mp2b 10 . . . . 5 𝐹:ℂ⟶(ℝ × ℝ)
65a1i 11 . . . 4 (⊤ → 𝐹:ℂ⟶(ℝ × ℝ))
76feqmptd 6953 . . 3 (⊤ → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
87mptru 1540 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧))
9 df-ov 7407 . . . . . . 7 ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
10 recl 15060 . . . . . . . 8 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
11 imcl 15061 . . . . . . . 8 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
12 oveq1 7411 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦)))
13 oveq2 7412 . . . . . . . . . 10 (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧)))
1413oveq2d 7420 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
15 ovex 7437 . . . . . . . . 9 ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ V
1612, 14, 1, 15ovmpo 7563 . . . . . . . 8 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
1710, 11, 16syl2anc 583 . . . . . . 7 (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
189, 17eqtr3id 2780 . . . . . 6 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
19 replim 15066 . . . . . 6 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2018, 19eqtr4d 2769 . . . . 5 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧)
2120fveq2d 6888 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (𝐹𝑧))
2210, 11opelxpd 5708 . . . . 5 (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
23 f1ocnvfv1 7269 . . . . 5 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
242, 22, 23sylancr 586 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
2521, 24eqtr3d 2768 . . 3 (𝑧 ∈ ℂ → (𝐹𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
2625mpteq2ia 5244 . 2 (𝑧 ∈ ℂ ↦ (𝐹𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
278, 26eqtri 2754 1 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wtru 1534  wcel 2098  cop 4629  cmpt 5224   × cxp 5667  ccnv 5668  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7404  cmpo 7406  cc 11107  cr 11108  ici 11111   + caddc 11112   · cmul 11114  cre 15047  cim 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-2 12276  df-cj 15049  df-re 15050  df-im 15051
This theorem is referenced by:  cnrehmeo  24828  cnrehmeoOLD  24829  cnheiborlem  24830  mbfimaopnlem  25534
  Copyright terms: Public domain W3C validator