MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjdivd Structured version   Visualization version   GIF version

Theorem cjdivd 15038
Description: Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
recld.1 (𝜑𝐴 ∈ ℂ)
readdd.2 (𝜑𝐵 ∈ ℂ)
cjdivd.2 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
cjdivd (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))

Proof of Theorem cjdivd
StepHypRef Expression
1 recld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 readdd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 cjdivd.2 . 2 (𝜑𝐵 ≠ 0)
4 cjdiv 14979 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2941  cfv 6488  (class class class)co 7346  cc 10979  0cc0 10981   / cdiv 11742  ccj 14911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-po 5539  df-so 5540  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-2 12146  df-cj 14914  df-re 14915  df-im 14916
This theorem is referenced by:  sqreulem  15175  efcj  15905  mul4sqlem  16756  ipcau2  24508  pjthlem1  24711  dvcjbr  25223  cosargd  25873  isosctrlem2  26079  dchrisum0re  26771  pjhthlem1  30107  sigardiv  44780
  Copyright terms: Public domain W3C validator