MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsubdi2 Structured version   Visualization version   GIF version

Theorem negsubdi2 11523
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
Assertion
Ref Expression
negsubdi2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))

Proof of Theorem negsubdi2
StepHypRef Expression
1 negsubdi 11520 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))
2 negcl 11464 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3 addcom 11404 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
42, 3sylan 578 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
5 negsub 11512 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
65ancoms 457 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
71, 4, 63eqtrd 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  (class class class)co 7411  cc 11110   + caddc 11115  cmin 11448  -cneg 11449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-neg 11451
This theorem is referenced by:  neg2sub  11524  negsubdi2d  11591  subeqrev  11640  mulsub2  11662  div2sub  12043  elz2  12580  fzshftral  13593  sqsubswap  14086  abssub  15277  abs2difabs  15285  3dvds  16278  dvdsprmpweqle  16823  sin2pim  26231  cos2pim  26232  ptolemy  26242  logtayl2  26406  ang180lem1  26550  ang180lem2  26551  isosctrlem2  26560  atanlogsublem  26656  1sgm2ppw  26939  mersenne  26966  2sqblem  27170  axeuclidlem  28487  dya2ub  33567  pellexlem6  41874
  Copyright terms: Public domain W3C validator