![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsubdi2 | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
Ref | Expression |
---|---|
negsubdi2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsubdi 10743 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | |
2 | negcl 10686 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
3 | addcom 10626 | . . 3 ⊢ ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴)) | |
4 | 2, 3 | sylan 572 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴)) |
5 | negsub 10735 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵 − 𝐴)) | |
6 | 5 | ancoms 451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵 − 𝐴)) |
7 | 1, 4, 6 | 3eqtrd 2818 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 (class class class)co 6976 ℂcc 10333 + caddc 10338 − cmin 10670 -cneg 10671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 df-sub 10672 df-neg 10673 |
This theorem is referenced by: neg2sub 10747 negsubdi2d 10814 subeqrev 10863 mulsub2 10885 div2sub 11266 elz2 11811 fzshftral 12811 sqsubswap 13298 abssub 14547 abs2difabs 14555 3dvds 15540 dvdsprmpweqle 16078 sin2pim 24774 cos2pim 24775 ptolemy 24785 logtayl2 24946 ang180lem1 25088 ang180lem2 25089 isosctrlem2 25098 atanlogsublem 25194 1sgm2ppw 25478 mersenne 25505 2sqblem 25709 axeuclidlem 26451 dya2ub 31179 pellexlem6 38833 |
Copyright terms: Public domain | W3C validator |