MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsubdi2 Structured version   Visualization version   GIF version

Theorem negsubdi2 11308
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
Assertion
Ref Expression
negsubdi2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))

Proof of Theorem negsubdi2
StepHypRef Expression
1 negsubdi 11305 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))
2 negcl 11249 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3 addcom 11189 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
42, 3sylan 579 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
5 negsub 11297 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
65ancoms 458 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
71, 4, 63eqtrd 2777 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  (class class class)co 7295  cc 10897   + caddc 10902  cmin 11233  -cneg 11234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-po 5505  df-so 5506  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-ltxr 11042  df-sub 11235  df-neg 11236
This theorem is referenced by:  neg2sub  11309  negsubdi2d  11376  subeqrev  11425  mulsub2  11447  div2sub  11828  elz2  12365  fzshftral  13372  sqsubswap  13865  abssub  15066  abs2difabs  15074  3dvds  16068  dvdsprmpweqle  16615  sin2pim  25670  cos2pim  25671  ptolemy  25681  logtayl2  25845  ang180lem1  25987  ang180lem2  25988  isosctrlem2  25997  atanlogsublem  26093  1sgm2ppw  26376  mersenne  26403  2sqblem  26607  axeuclidlem  27358  dya2ub  32265  pellexlem6  40679
  Copyright terms: Public domain W3C validator