MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsubdi2 Structured version   Visualization version   GIF version

Theorem negsubdi2 10933
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
Assertion
Ref Expression
negsubdi2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))

Proof of Theorem negsubdi2
StepHypRef Expression
1 negsubdi 10930 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))
2 negcl 10874 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3 addcom 10814 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
42, 3sylan 580 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴))
5 negsub 10922 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
65ancoms 459 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵𝐴))
71, 4, 63eqtrd 2857 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  (class class class)co 7145  cc 10523   + caddc 10528  cmin 10858  -cneg 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861
This theorem is referenced by:  neg2sub  10934  negsubdi2d  11001  subeqrev  11050  mulsub2  11072  div2sub  11453  elz2  11987  fzshftral  12983  sqsubswap  13471  abssub  14674  abs2difabs  14682  3dvds  15668  dvdsprmpweqle  16210  sin2pim  24998  cos2pim  24999  ptolemy  25009  logtayl2  25172  ang180lem1  25314  ang180lem2  25315  isosctrlem2  25324  atanlogsublem  25420  1sgm2ppw  25703  mersenne  25730  2sqblem  25934  axeuclidlem  26675  dya2ub  31427  pellexlem6  39309
  Copyright terms: Public domain W3C validator