MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls0ord Structured version   Visualization version   GIF version

Theorem muls0ord 28124
Description: If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025.)
Hypotheses
Ref Expression
muls0ord.1 (𝜑𝐴 No )
muls0ord.2 (𝜑𝐵 No )
Assertion
Ref Expression
muls0ord (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s𝐵 = 0s )))

Proof of Theorem muls0ord
StepHypRef Expression
1 muls0ord.2 . . . . . . . . . . 11 (𝜑𝐵 No )
2 muls02 28080 . . . . . . . . . . 11 (𝐵 No → ( 0s ·s 𝐵) = 0s )
31, 2syl 17 . . . . . . . . . 10 (𝜑 → ( 0s ·s 𝐵) = 0s )
43adantr 480 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → ( 0s ·s 𝐵) = 0s )
54eqeq2d 2742 . . . . . . . 8 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = ( 0s ·s 𝐵) ↔ (𝐴 ·s 𝐵) = 0s ))
6 muls0ord.1 . . . . . . . . . 10 (𝜑𝐴 No )
76adantr 480 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐴 No )
8 0sno 27770 . . . . . . . . . 10 0s No
98a1i 11 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 0s No )
101adantr 480 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐵 No )
11 simpr 484 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐵 ≠ 0s )
127, 9, 10, 11mulscan2d 28118 . . . . . . . 8 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = ( 0s ·s 𝐵) ↔ 𝐴 = 0s ))
135, 12bitr3d 281 . . . . . . 7 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = 0s𝐴 = 0s ))
1413biimpd 229 . . . . . 6 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = 0s𝐴 = 0s ))
1514impancom 451 . . . . 5 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (𝐵 ≠ 0s𝐴 = 0s ))
1615necon1bd 2946 . . . 4 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (¬ 𝐴 = 0s𝐵 = 0s ))
1716orrd 863 . . 3 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (𝐴 = 0s𝐵 = 0s ))
1817ex 412 . 2 (𝜑 → ((𝐴 ·s 𝐵) = 0s → (𝐴 = 0s𝐵 = 0s )))
19 oveq1 7353 . . . . 5 (𝐴 = 0s → (𝐴 ·s 𝐵) = ( 0s ·s 𝐵))
2019eqeq1d 2733 . . . 4 (𝐴 = 0s → ((𝐴 ·s 𝐵) = 0s ↔ ( 0s ·s 𝐵) = 0s ))
213, 20syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 0s → (𝐴 ·s 𝐵) = 0s ))
22 muls01 28051 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
236, 22syl 17 . . . 4 (𝜑 → (𝐴 ·s 0s ) = 0s )
24 oveq2 7354 . . . . 5 (𝐵 = 0s → (𝐴 ·s 𝐵) = (𝐴 ·s 0s ))
2524eqeq1d 2733 . . . 4 (𝐵 = 0s → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 ·s 0s ) = 0s ))
2623, 25syl5ibrcom 247 . . 3 (𝜑 → (𝐵 = 0s → (𝐴 ·s 𝐵) = 0s ))
2721, 26jaod 859 . 2 (𝜑 → ((𝐴 = 0s𝐵 = 0s ) → (𝐴 ·s 𝐵) = 0s ))
2818, 27impbid 212 1 (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s𝐵 = 0s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346   No csur 27578   0s c0s 27766   ·s cmuls 28045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046
This theorem is referenced by:  mulsne0bd  28125  expsne0  28359
  Copyright terms: Public domain W3C validator