MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls0ord Structured version   Visualization version   GIF version

Theorem muls0ord 28186
Description: If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025.)
Hypotheses
Ref Expression
muls0ord.1 (𝜑𝐴 No )
muls0ord.2 (𝜑𝐵 No )
Assertion
Ref Expression
muls0ord (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s𝐵 = 0s )))

Proof of Theorem muls0ord
StepHypRef Expression
1 muls0ord.2 . . . . . . . . . . 11 (𝜑𝐵 No )
2 muls02 28142 . . . . . . . . . . 11 (𝐵 No → ( 0s ·s 𝐵) = 0s )
31, 2syl 17 . . . . . . . . . 10 (𝜑 → ( 0s ·s 𝐵) = 0s )
43adantr 479 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → ( 0s ·s 𝐵) = 0s )
54eqeq2d 2737 . . . . . . . 8 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = ( 0s ·s 𝐵) ↔ (𝐴 ·s 𝐵) = 0s ))
6 muls0ord.1 . . . . . . . . . 10 (𝜑𝐴 No )
76adantr 479 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐴 No )
8 0sno 27856 . . . . . . . . . 10 0s No
98a1i 11 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 0s No )
101adantr 479 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐵 No )
11 simpr 483 . . . . . . . . 9 ((𝜑𝐵 ≠ 0s ) → 𝐵 ≠ 0s )
127, 9, 10, 11mulscan2d 28180 . . . . . . . 8 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = ( 0s ·s 𝐵) ↔ 𝐴 = 0s ))
135, 12bitr3d 280 . . . . . . 7 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = 0s𝐴 = 0s ))
1413biimpd 228 . . . . . 6 ((𝜑𝐵 ≠ 0s ) → ((𝐴 ·s 𝐵) = 0s𝐴 = 0s ))
1514impancom 450 . . . . 5 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (𝐵 ≠ 0s𝐴 = 0s ))
1615necon1bd 2948 . . . 4 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (¬ 𝐴 = 0s𝐵 = 0s ))
1716orrd 861 . . 3 ((𝜑 ∧ (𝐴 ·s 𝐵) = 0s ) → (𝐴 = 0s𝐵 = 0s ))
1817ex 411 . 2 (𝜑 → ((𝐴 ·s 𝐵) = 0s → (𝐴 = 0s𝐵 = 0s )))
19 oveq1 7431 . . . . 5 (𝐴 = 0s → (𝐴 ·s 𝐵) = ( 0s ·s 𝐵))
2019eqeq1d 2728 . . . 4 (𝐴 = 0s → ((𝐴 ·s 𝐵) = 0s ↔ ( 0s ·s 𝐵) = 0s ))
213, 20syl5ibrcom 246 . . 3 (𝜑 → (𝐴 = 0s → (𝐴 ·s 𝐵) = 0s ))
22 muls01 28113 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
236, 22syl 17 . . . 4 (𝜑 → (𝐴 ·s 0s ) = 0s )
24 oveq2 7432 . . . . 5 (𝐵 = 0s → (𝐴 ·s 𝐵) = (𝐴 ·s 0s ))
2524eqeq1d 2728 . . . 4 (𝐵 = 0s → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 ·s 0s ) = 0s ))
2623, 25syl5ibrcom 246 . . 3 (𝜑 → (𝐵 = 0s → (𝐴 ·s 𝐵) = 0s ))
2721, 26jaod 857 . 2 (𝜑 → ((𝐴 = 0s𝐵 = 0s ) → (𝐴 ·s 𝐵) = 0s ))
2818, 27impbid 211 1 (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s𝐵 = 0s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930  (class class class)co 7424   No csur 27669   0s c0s 27852   ·s cmuls 28107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-1o 8496  df-2o 8497  df-nadd 8696  df-no 27672  df-slt 27673  df-bday 27674  df-sle 27775  df-sslt 27811  df-scut 27813  df-0s 27854  df-made 27871  df-old 27872  df-left 27874  df-right 27875  df-norec 27952  df-norec2 27963  df-adds 27974  df-negs 28031  df-subs 28032  df-muls 28108
This theorem is referenced by:  mulsne0bd  28187
  Copyright terms: Public domain W3C validator