MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psraddclOLD Structured version   Visualization version   GIF version

Theorem psraddclOLD 21977
Description: Obsolete version of psraddcl 21976 as of 12-Apr-2025. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psraddclOLD.s 𝑆 = (𝐼 mPwSer 𝑅)
psraddclOLD.b 𝐵 = (Base‘𝑆)
psraddclOLD.p + = (+g𝑆)
psraddclOLD.r (𝜑𝑅 ∈ Grp)
psraddclOLD.x (𝜑𝑋𝐵)
psraddclOLD.y (𝜑𝑌𝐵)
Assertion
Ref Expression
psraddclOLD (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem psraddclOLD
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddclOLD.r . . . . 5 (𝜑𝑅 ∈ Grp)
2 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2735 . . . . . . 7 (+g𝑅) = (+g𝑅)
42, 3grpcl 18972 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
543expb 1119 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
61, 5sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7 psraddclOLD.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 eqid 2735 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psraddclOLD.b . . . . 5 𝐵 = (Base‘𝑆)
10 psraddclOLD.x . . . . 5 (𝜑𝑋𝐵)
117, 2, 8, 9, 10psrelbas 21972 . . . 4 (𝜑𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
12 psraddclOLD.y . . . . 5 (𝜑𝑌𝐵)
137, 2, 8, 9, 12psrelbas 21972 . . . 4 (𝜑𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
14 ovex 7464 . . . . . 6 (ℕ0m 𝐼) ∈ V
1514rabex 5345 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1615a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
17 inidm 4235 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
186, 11, 13, 16, 16, 17off 7715 . . 3 (𝜑 → (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
19 fvex 6920 . . . 4 (Base‘𝑅) ∈ V
2019, 15elmap 8910 . . 3 ((𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2118, 20sylibr 234 . 2 (𝜑 → (𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
22 psraddclOLD.p . . 3 + = (+g𝑆)
237, 9, 3, 22, 10, 12psradd 21975 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
24 reldmpsr 21952 . . . . . 6 Rel dom mPwSer
2524, 7, 9elbasov 17252 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2610, 25syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2726simpld 494 . . 3 (𝜑𝐼 ∈ V)
287, 2, 8, 9, 27psrbas 21971 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2921, 23, 283eltr4d 2854 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  ccnv 5688  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964   mPwSer cmps 21942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-psr 21947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator