| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psraddclOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of psraddcl 21863 as of 12-Apr-2025. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psraddclOLD.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psraddclOLD.b | ⊢ 𝐵 = (Base‘𝑆) |
| psraddclOLD.p | ⊢ + = (+g‘𝑆) |
| psraddclOLD.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psraddclOLD.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psraddclOLD.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psraddclOLD | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psraddclOLD.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18838 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 5 | 4 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 6 | 1, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 7 | psraddclOLD.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 8 | eqid 2729 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 9 | psraddclOLD.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | psraddclOLD.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 7, 2, 8, 9, 10 | psrelbas 21859 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 12 | psraddclOLD.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 7, 2, 8, 9, 12 | psrelbas 21859 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | ovex 7386 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 15 | 14 | rabex 5281 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 17 | inidm 4180 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 18 | 6, 11, 13, 16, 16, 17 | off 7635 | . . 3 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 19 | fvex 6839 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
| 20 | 19, 15 | elmap 8805 | . . 3 ⊢ ((𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 21 | 18, 20 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 22 | psraddclOLD.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 23 | 7, 9, 3, 22, 10, 12 | psradd 21862 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
| 24 | reldmpsr 21839 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 25 | 24, 7, 9 | elbasov 17145 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 26 | 10, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 27 | 26 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 28 | 7, 2, 8, 9, 27 | psrbas 21858 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 29 | 21, 23, 28 | 3eltr4d 2843 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 mPwSer cmps 21829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-tset 17198 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-psr 21834 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |