![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bl2ioo | Structured version Visualization version GIF version |
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
bl2ioo | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . . . . . . . . 10 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | remetdval 22812 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴 − 𝑥))) |
3 | recn 10228 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | recn 10228 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
5 | abssub 14274 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) | |
6 | 3, 4, 5 | syl2an 583 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) |
7 | 2, 6 | eqtrd 2805 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥 − 𝐴))) |
8 | 7 | breq1d 4796 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
9 | 8 | adantlr 694 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
10 | absdiflt 14265 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
11 | 10 | 3expb 1113 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
12 | 11 | ancoms 455 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
13 | 9, 12 | bitrd 268 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
14 | 13 | pm5.32da 568 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵))))) |
15 | 3anass 1080 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
16 | 14, 15 | syl6bbr 278 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
17 | rexr 10287 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
18 | 1 | rexmet 22814 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ) |
19 | elbl 22413 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) | |
20 | 18, 19 | mp3an1 1559 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
21 | 17, 20 | sylan2 580 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
22 | resubcl 10547 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
23 | readdcl 10221 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
24 | rexr 10287 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℝ → (𝐴 − 𝐵) ∈ ℝ*) | |
25 | rexr 10287 | . . . . 5 ⊢ ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*) | |
26 | elioo2 12421 | . . . . 5 ⊢ (((𝐴 − 𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
27 | 24, 25, 26 | syl2an 583 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
28 | 22, 23, 27 | syl2anc 573 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
29 | 16, 21, 28 | 3bitr4d 300 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)))) |
30 | 29 | eqrdv 2769 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 × cxp 5247 ↾ cres 5251 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 + caddc 10141 ℝ*cxr 10275 < clt 10276 − cmin 10468 (,)cioo 12380 abscabs 14182 ∞Metcxmt 19946 ballcbl 19948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-xadd 12152 df-ioo 12384 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 |
This theorem is referenced by: ioo2bl 22816 blssioo 22818 tgioo 22819 iccntr 22844 icccmplem2 22846 reconnlem2 22850 opnreen 22854 lebnumii 22985 opnmbllem 23589 lhop 23999 dvcnvre 24002 dya2icoseg2 30680 opnrebl 32652 opnrebl2 32653 opnmbllem0 33778 iooabslt 40242 |
Copyright terms: Public domain | W3C validator |