MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bl2ioo Structured version   Visualization version   GIF version

Theorem bl2ioo 24155
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
bl2ioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))

Proof of Theorem bl2ioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21remetdval 24152 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴𝑥)))
3 recn 11141 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 11141 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 abssub 15211 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
63, 4, 5syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
72, 6eqtrd 2776 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥𝐴)))
87breq1d 5115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
98adantlr 713 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
10 absdiflt 15202 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
11103expb 1120 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1211ancoms 459 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
139, 12bitrd 278 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1413pm5.32da 579 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)))))
15 3anass 1095 . . . 4 ((𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1614, 15bitr4di 288 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
17 rexr 11201 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
181rexmet 24154 . . . . 5 𝐷 ∈ (∞Met‘ℝ)
19 elbl 23741 . . . . 5 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2018, 19mp3an1 1448 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2117, 20sylan2 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
22 resubcl 11465 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
23 readdcl 11134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
24 rexr 11201 . . . . 5 ((𝐴𝐵) ∈ ℝ → (𝐴𝐵) ∈ ℝ*)
25 rexr 11201 . . . . 5 ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*)
26 elioo2 13305 . . . . 5 (((𝐴𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2724, 25, 26syl2an 596 . . . 4 (((𝐴𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2822, 23, 27syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2916, 21, 283bitr4d 310 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵))))
3029eqrdv 2734 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105   × cxp 5631  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   + caddc 11054  *cxr 11188   < clt 11189  cmin 11385  (,)cioo 13264  abscabs 15119  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-ioo 13268  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791
This theorem is referenced by:  ioo2bl  24156  blssioo  24158  tgioo  24159  iccntr  24184  icccmplem2  24186  reconnlem2  24190  opnreen  24194  lebnumii  24329  opnmbllem  24965  lhop  25380  dvcnvre  25383  dya2icoseg2  32878  opnrebl  34792  opnrebl2  34793  opnmbllem0  36114  iooabslt  43727
  Copyright terms: Public domain W3C validator