![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bl2ioo | Structured version Visualization version GIF version |
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
bl2ioo | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . . . . . . . . 10 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | remetdval 23084 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴 − 𝑥))) |
3 | recn 10480 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | recn 10480 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
5 | abssub 14524 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) | |
6 | 3, 4, 5 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) |
7 | 2, 6 | eqtrd 2833 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥 − 𝐴))) |
8 | 7 | breq1d 4978 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
9 | 8 | adantlr 711 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
10 | absdiflt 14515 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
11 | 10 | 3expb 1113 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
12 | 11 | ancoms 459 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
13 | 9, 12 | bitrd 280 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
14 | 13 | pm5.32da 579 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵))))) |
15 | 3anass 1088 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
16 | 14, 15 | syl6bbr 290 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
17 | rexr 10540 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
18 | 1 | rexmet 23086 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ) |
19 | elbl 22685 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) | |
20 | 18, 19 | mp3an1 1440 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
21 | 17, 20 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
22 | resubcl 10804 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
23 | readdcl 10473 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
24 | rexr 10540 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℝ → (𝐴 − 𝐵) ∈ ℝ*) | |
25 | rexr 10540 | . . . . 5 ⊢ ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*) | |
26 | elioo2 12633 | . . . . 5 ⊢ (((𝐴 − 𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
27 | 24, 25, 26 | syl2an 595 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
28 | 22, 23, 27 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
29 | 16, 21, 28 | 3bitr4d 312 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)))) |
30 | 29 | eqrdv 2795 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 × cxp 5448 ↾ cres 5452 ∘ ccom 5454 ‘cfv 6232 (class class class)co 7023 ℂcc 10388 ℝcr 10389 + caddc 10393 ℝ*cxr 10527 < clt 10528 − cmin 10723 (,)cioo 12592 abscabs 14431 ∞Metcxmet 20216 ballcbl 20218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-xadd 12362 df-ioo 12596 df-seq 13224 df-exp 13284 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 |
This theorem is referenced by: ioo2bl 23088 blssioo 23090 tgioo 23091 iccntr 23116 icccmplem2 23118 reconnlem2 23122 opnreen 23126 lebnumii 23257 opnmbllem 23889 lhop 24300 dvcnvre 24303 dya2icoseg2 31149 opnrebl 33279 opnrebl2 33280 opnmbllem0 34480 iooabslt 41337 |
Copyright terms: Public domain | W3C validator |