MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bl2ioo Structured version   Visualization version   GIF version

Theorem bl2ioo 23689
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
bl2ioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))

Proof of Theorem bl2ioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21remetdval 23686 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴𝑥)))
3 recn 10819 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 10819 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 abssub 14890 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
63, 4, 5syl2an 599 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
72, 6eqtrd 2777 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥𝐴)))
87breq1d 5063 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
98adantlr 715 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
10 absdiflt 14881 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
11103expb 1122 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1211ancoms 462 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
139, 12bitrd 282 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1413pm5.32da 582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)))))
15 3anass 1097 . . . 4 ((𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1614, 15bitr4di 292 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
17 rexr 10879 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
181rexmet 23688 . . . . 5 𝐷 ∈ (∞Met‘ℝ)
19 elbl 23286 . . . . 5 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2018, 19mp3an1 1450 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2117, 20sylan2 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
22 resubcl 11142 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
23 readdcl 10812 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
24 rexr 10879 . . . . 5 ((𝐴𝐵) ∈ ℝ → (𝐴𝐵) ∈ ℝ*)
25 rexr 10879 . . . . 5 ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*)
26 elioo2 12976 . . . . 5 (((𝐴𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2724, 25, 26syl2an 599 . . . 4 (((𝐴𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2822, 23, 27syl2anc 587 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2916, 21, 283bitr4d 314 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵))))
3029eqrdv 2735 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053   × cxp 5549  cres 5553  ccom 5555  cfv 6380  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732  *cxr 10866   < clt 10867  cmin 11062  (,)cioo 12935  abscabs 14797  ∞Metcxmet 20348  ballcbl 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-xadd 12705  df-ioo 12939  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358
This theorem is referenced by:  ioo2bl  23690  blssioo  23692  tgioo  23693  iccntr  23718  icccmplem2  23720  reconnlem2  23724  opnreen  23728  lebnumii  23863  opnmbllem  24498  lhop  24913  dvcnvre  24916  dya2icoseg2  31957  opnrebl  34246  opnrebl2  34247  opnmbllem0  35550  iooabslt  42712
  Copyright terms: Public domain W3C validator