| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnbl0 | Structured version Visualization version GIF version | ||
| Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnblcld.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnbl0 | ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . . . . 6 ⊢ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)) | |
| 2 | abscl 15185 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
| 3 | absge0 15194 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥)) | |
| 4 | 2, 3 | jca 511 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
| 6 | 5 | biantrurd 532 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))) |
| 7 | 1, 6 | bitr4id 290 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅)) |
| 8 | 0re 11114 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 9 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*) | |
| 10 | elico2 13310 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) |
| 12 | 0cn 11104 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
| 13 | cnblcld.1 | . . . . . . . . . . 11 ⊢ 𝐷 = (abs ∘ − ) | |
| 14 | 13 | cnmetdval 24685 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥))) |
| 15 | abssub 15234 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0))) | |
| 16 | 14, 15 | eqtrd 2766 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
| 17 | 12, 16 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
| 18 | subid1 11381 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
| 19 | 18 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
| 20 | 17, 19 | eqtrd 2766 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥)) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥)) |
| 22 | 21 | breq1d 5099 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅)) |
| 23 | 7, 11, 22 | 3bitr4d 311 | . . . 4 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅)) |
| 24 | 23 | pm5.32da 579 | . . 3 ⊢ (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
| 25 | absf 15245 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
| 26 | ffn 6651 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ abs Fn ℂ |
| 28 | elpreima 6991 | . . . 4 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) | |
| 29 | 27, 28 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) |
| 30 | cnxmet 24687 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 31 | 13, 30 | eqeltri 2827 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℂ) |
| 32 | elbl 24303 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) | |
| 33 | 31, 12, 32 | mp3an12 1453 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
| 34 | 24, 29, 33 | 3bitr4d 311 | . 2 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅))) |
| 35 | 34 | eqrdv 2729 | 1 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 − cmin 11344 [,)cico 13247 abscabs 15141 ∞Metcxmet 21276 ballcbl 21278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-ico 13251 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 |
| This theorem is referenced by: psercnlem2 26361 efopnlem1 26592 binomcxplemdvbinom 44456 binomcxplemnotnn0 44459 |
| Copyright terms: Public domain | W3C validator |