MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnbl0 Structured version   Visualization version   GIF version

Theorem cnbl0 23379
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnbl0 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))

Proof of Theorem cnbl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 1086 . . . . . 6 (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))
2 abscl 14630 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
3 absge0 14639 . . . . . . . . 9 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
42, 3jca 515 . . . . . . . 8 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
54adantl 485 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
65biantrurd 536 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)))
71, 6bitr4id 293 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅))
8 0re 10632 . . . . . 6 0 ∈ ℝ
9 simpl 486 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
10 elico2 12789 . . . . . 6 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
118, 9, 10sylancr 590 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
12 0cn 10622 . . . . . . . . 9 0 ∈ ℂ
13 cnblcld.1 . . . . . . . . . . 11 𝐷 = (abs ∘ − )
1413cnmetdval 23376 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
15 abssub 14678 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
1614, 15eqtrd 2833 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
1712, 16mpan 689 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
18 subid1 10895 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
1918fveq2d 6649 . . . . . . . 8 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2017, 19eqtrd 2833 . . . . . . 7 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2120adantl 485 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2221breq1d 5040 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅))
237, 11, 223bitr4d 314 . . . 4 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅))
2423pm5.32da 582 . . 3 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
25 absf 14689 . . . . 5 abs:ℂ⟶ℝ
26 ffn 6487 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
2725, 26ax-mp 5 . . . 4 abs Fn ℂ
28 elpreima 6805 . . . 4 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
2927, 28mp1i 13 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
30 cnxmet 23378 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
3113, 30eqeltri 2886 . . . 4 𝐷 ∈ (∞Met‘ℂ)
32 elbl 22995 . . . 4 ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3331, 12, 32mp3an12 1448 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3424, 29, 333bitr4d 314 . 2 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅)))
3534eqrdv 2796 1 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  ccnv 5518  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  cmin 10859  [,)cico 12728  abscabs 14585  ∞Metcxmet 20076  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086
This theorem is referenced by:  psercnlem2  25019  efopnlem1  25247  binomcxplemdvbinom  41057  binomcxplemnotnn0  41060
  Copyright terms: Public domain W3C validator