Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnbl0 | Structured version Visualization version GIF version |
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
cnblcld.1 | ⊢ 𝐷 = (abs ∘ − ) |
Ref | Expression |
---|---|
cnbl0 | ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . . . . . 6 ⊢ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)) | |
2 | abscl 14918 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
3 | absge0 14927 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥)) | |
4 | 2, 3 | jca 511 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
6 | 5 | biantrurd 532 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))) |
7 | 1, 6 | bitr4id 289 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅)) |
8 | 0re 10908 | . . . . . 6 ⊢ 0 ∈ ℝ | |
9 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*) | |
10 | elico2 13072 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) |
12 | 0cn 10898 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
13 | cnblcld.1 | . . . . . . . . . . 11 ⊢ 𝐷 = (abs ∘ − ) | |
14 | 13 | cnmetdval 23840 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥))) |
15 | abssub 14966 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0))) | |
16 | 14, 15 | eqtrd 2778 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
17 | 12, 16 | mpan 686 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
18 | subid1 11171 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
19 | 18 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
20 | 17, 19 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥)) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥)) |
22 | 21 | breq1d 5080 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅)) |
23 | 7, 11, 22 | 3bitr4d 310 | . . . 4 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅)) |
24 | 23 | pm5.32da 578 | . . 3 ⊢ (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
25 | absf 14977 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
26 | ffn 6584 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ abs Fn ℂ |
28 | elpreima 6917 | . . . 4 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) |
30 | cnxmet 23842 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
31 | 13, 30 | eqeltri 2835 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℂ) |
32 | elbl 23449 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) | |
33 | 31, 12, 32 | mp3an12 1449 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
34 | 24, 29, 33 | 3bitr4d 310 | . 2 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅))) |
35 | 34 | eqrdv 2736 | 1 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ◡ccnv 5579 “ cima 5583 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 [,)cico 13010 abscabs 14873 ∞Metcxmet 20495 ballcbl 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 |
This theorem is referenced by: psercnlem2 25488 efopnlem1 25716 binomcxplemdvbinom 41860 binomcxplemnotnn0 41863 |
Copyright terms: Public domain | W3C validator |