MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blgt0 Structured version   Visualization version   GIF version

Theorem blgt0 23658
Description: A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blgt0 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 < 𝑅)

Proof of Theorem blgt0
StepHypRef Expression
1 0xr 11123 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ∈ ℝ*)
3 simpl1 1190 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 simpl2 1191 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑃 ∈ 𝑋)
5 elbl 23647 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
65simprbda 499 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝐴 ∈ 𝑋)
7 xmetcl 23590 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝑃𝐷𝐴) ∈ ℝ*)
83, 4, 6, 7syl3anc 1370 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷𝐴) ∈ ℝ*)
9 simpl3 1192 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑅 ∈ ℝ*)
10 xmetge0 23603 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷𝐴))
113, 4, 6, 10syl3anc 1370 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ≀ (𝑃𝐷𝐴))
125simplbda 500 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷𝐴) < 𝑅)
132, 8, 9, 11, 12xrlelttrd 12995 1 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 < 𝑅)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1086   ∈ wcel 2105   class class class wbr 5092  β€˜cfv 6479  (class class class)co 7337  0cc0 10972  β„*cxr 11109   < clt 11110   ≀ cle 11111  βˆžMetcxmet 20688  ballcbl 20690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-2 12137  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-psmet 20695  df-xmet 20696  df-bl 20698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator