Step | Hyp | Ref
| Expression |
1 | | sumex 15399 |
. . . . . 6
⊢
Σ𝑗 ∈
ℕ0 ((𝐺‘𝑦)‘𝑗) ∈ V |
2 | 1 | rgenw 3076 |
. . . . 5
⊢
∀𝑦 ∈
𝑆 Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗) ∈ V |
3 | | pserf.f |
. . . . . 6
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
4 | 3 | fnmpt 6573 |
. . . . 5
⊢
(∀𝑦 ∈
𝑆 Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗) ∈ V → 𝐹 Fn 𝑆) |
5 | 2, 4 | mp1i 13 |
. . . 4
⊢ (𝜑 → 𝐹 Fn 𝑆) |
6 | | psercn.s |
. . . . . . . . . . 11
⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
7 | | cnvimass 5989 |
. . . . . . . . . . . 12
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs |
8 | | absf 15049 |
. . . . . . . . . . . . 13
⊢
abs:ℂ⟶ℝ |
9 | 8 | fdmi 6612 |
. . . . . . . . . . . 12
⊢ dom abs =
ℂ |
10 | 7, 9 | sseqtri 3957 |
. . . . . . . . . . 11
⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
11 | 6, 10 | eqsstri 3955 |
. . . . . . . . . 10
⊢ 𝑆 ⊆
ℂ |
12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
13 | 12 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
14 | | 0cn 10967 |
. . . . . . . . . . 11
⊢ 0 ∈
ℂ |
15 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) = (abs ∘ − ) |
16 | 15 | cnmetdval 23934 |
. . . . . . . . . . 11
⊢ ((0
∈ ℂ ∧ 𝑎
∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎))) |
17 | 14, 13, 16 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎))) |
18 | | abssub 15038 |
. . . . . . . . . . 11
⊢ ((0
∈ ℂ ∧ 𝑎
∈ ℂ) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0))) |
19 | 14, 13, 18 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0))) |
20 | 13 | subid1d 11321 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 − 0) = 𝑎) |
21 | 20 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘(𝑎 − 0)) = (abs‘𝑎)) |
22 | 17, 19, 21 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(abs ∘ − )𝑎) = (abs‘𝑎)) |
23 | | breq2 5078 |
. . . . . . . . . . 11
⊢
((((abs‘𝑎) +
𝑅) / 2) = if(𝑅 ∈ ℝ,
(((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))) |
24 | | breq2 5078 |
. . . . . . . . . . 11
⊢
(((abs‘𝑎) + 1)
= if(𝑅 ∈ ℝ,
(((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
26 | 25, 6 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑅))) |
27 | | ffn 6600 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
28 | | elpreima 6935 |
. . . . . . . . . . . . . . . . . 18
⊢ (abs Fn
ℂ → (𝑎 ∈
(◡abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))) |
29 | 8, 27, 28 | mp2b 10 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))) |
30 | 26, 29 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))) |
31 | 30 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑅)) |
32 | | 0re 10977 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
33 | | iccssxr 13162 |
. . . . . . . . . . . . . . . . 17
⊢
(0[,]+∞) ⊆ ℝ* |
34 | | pserf.g |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
35 | | pserf.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
36 | | pserf.r |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
37 | 34, 35, 36 | radcnvcl 25576 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
39 | 33, 38 | sselid 3919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈
ℝ*) |
40 | | elico2 13143 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 𝑅
∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤
(abs‘𝑎) ∧
(abs‘𝑎) < 𝑅))) |
41 | 32, 39, 40 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤
(abs‘𝑎) ∧
(abs‘𝑎) < 𝑅))) |
42 | 31, 41 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤
(abs‘𝑎) ∧
(abs‘𝑎) < 𝑅)) |
43 | 42 | simp3d 1143 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑅) |
44 | 43 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅) |
45 | 13 | abscld 15148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
46 | | avglt1 12211 |
. . . . . . . . . . . . 13
⊢
(((abs‘𝑎)
∈ ℝ ∧ 𝑅
∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))) |
47 | 45, 46 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))) |
48 | 44, 47 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)) |
49 | 45 | ltp1d 11905 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1)) |
50 | 49 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1)) |
51 | 23, 24, 48, 50 | ifbothda 4497 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))) |
52 | | psercn.m |
. . . . . . . . . 10
⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
53 | 51, 52 | breqtrrdi 5116 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
54 | 22, 53 | eqbrtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(abs ∘ − )𝑎) < 𝑀) |
55 | | cnxmet 23936 |
. . . . . . . . 9
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
56 | 34, 3, 35, 36, 6, 52 | psercnlem1 25584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧
(abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
57 | 56 | simp1d 1141 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ+) |
58 | 57 | rpxrd 12773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ*) |
59 | | elbl 23541 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 𝑀 ∈
ℝ*) → (𝑎 ∈ (0(ball‘(abs ∘ −
))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs
∘ − )𝑎) <
𝑀))) |
60 | 55, 14, 58, 59 | mp3an12i 1464 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ −
))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs
∘ − )𝑎) <
𝑀))) |
61 | 13, 54, 60 | mpbir2and 710 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ −
))𝑀)) |
62 | 61 | fvresd 6794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀))‘𝑎) = (𝐹‘𝑎)) |
63 | 3 | reseq1i 5887 |
. . . . . . . . . 10
⊢ (𝐹 ↾ (0(ball‘(abs
∘ − ))𝑀)) =
((𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0
((𝐺‘𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ −
))𝑀)) |
64 | 34, 3, 35, 36, 6, 56 | psercnlem2 25583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ −
))𝑀) ∧
(0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
65 | 64 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
66 | 64 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
67 | 65, 66 | sstrd 3931 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) ⊆ 𝑆) |
68 | 67 | resmptd 5948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ −
))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ Σ𝑗 ∈ ℕ0
((𝐺‘𝑦)‘𝑗))) |
69 | 63, 68 | eqtrid 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ Σ𝑗 ∈ ℕ0
((𝐺‘𝑦)‘𝑗))) |
70 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))𝑀)
↦ Σ𝑗 ∈
ℕ0 ((𝐺‘𝑦)‘𝑗)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ Σ𝑗 ∈ ℕ0
((𝐺‘𝑦)‘𝑗)) |
71 | 35 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
72 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑦 → (𝐺‘𝑘) = (𝐺‘𝑦)) |
73 | 72 | seqeq3d 13729 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑦 → seq0( + , (𝐺‘𝑘)) = seq0( + , (𝐺‘𝑦))) |
74 | 73 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → (seq0( + , (𝐺‘𝑘))‘𝑠) = (seq0( + , (𝐺‘𝑦))‘𝑠)) |
75 | 74 | cbvmptv 5187 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0(ball‘(abs
∘ − ))𝑀)
↦ (seq0( + , (𝐺‘𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ (seq0( + ,
(𝐺‘𝑦))‘𝑠)) |
76 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑖 → (seq0( + , (𝐺‘𝑦))‘𝑠) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
77 | 76 | mpteq2dv 5176 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑖 → (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ (seq0( + ,
(𝐺‘𝑦))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ (seq0( + ,
(𝐺‘𝑦))‘𝑖))) |
78 | 75, 77 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑖 → (𝑘 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ (seq0( + ,
(𝐺‘𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ (seq0( + ,
(𝐺‘𝑦))‘𝑖))) |
79 | 78 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ0
↦ (𝑘 ∈
(0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺‘𝑘))‘𝑠))) = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ (0(ball‘(abs
∘ − ))𝑀)
↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
80 | 57 | rpred 12772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
81 | 56 | simp3d 1143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
82 | 34, 70, 71, 36, 79, 80, 81, 65 | psercn2 25582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑦 ∈ (0(ball‘(abs ∘ −
))𝑀) ↦ Σ𝑗 ∈ ℕ0
((𝐺‘𝑦)‘𝑗)) ∈ ((0(ball‘(abs ∘ −
))𝑀)–cn→ℂ)) |
83 | 69, 82 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ)) |
84 | | cncff 24056 |
. . . . . . . 8
⊢ ((𝐹 ↾ (0(ball‘(abs
∘ − ))𝑀))
∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)):(0(ball‘(abs
∘ − ))𝑀)⟶ℂ) |
85 | 83, 84 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)):(0(ball‘(abs
∘ − ))𝑀)⟶ℂ) |
86 | 85, 61 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀))‘𝑎) ∈
ℂ) |
87 | 62, 86 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹‘𝑎) ∈ ℂ) |
88 | 87 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝐹‘𝑎) ∈ ℂ) |
89 | | ffnfv 6992 |
. . . 4
⊢ (𝐹:𝑆⟶ℂ ↔ (𝐹 Fn 𝑆 ∧ ∀𝑎 ∈ 𝑆 (𝐹‘𝑎) ∈ ℂ)) |
90 | 5, 88, 89 | sylanbrc 583 |
. . 3
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
91 | 67, 11 | sstrdi 3933 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) ⊆
ℂ) |
92 | | ssid 3943 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
93 | | eqid 2738 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
94 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t
(0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀)) |
95 | 93 | cnfldtopon 23946 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
96 | 95 | toponrestid 22070 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
97 | 93, 94, 96 | cncfcn 24073 |
. . . . . . . . 9
⊢
(((0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) Cn
(TopOpen‘ℂfld))) |
98 | 91, 92, 97 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((0(ball‘(abs ∘ −
))𝑀)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) Cn
(TopOpen‘ℂfld))) |
99 | 83, 98 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
(((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) Cn
(TopOpen‘ℂfld))) |
100 | 93 | cnfldtop 23947 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈ Top |
101 | | unicntop 23949 |
. . . . . . . . . 10
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
102 | 101 | restuni 22313 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ Top ∧
(0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ) → (0(ball‘(abs
∘ − ))𝑀) =
∪ ((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀))) |
103 | 100, 91, 102 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) = ∪ ((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀))) |
104 | 61, 103 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ∪
((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀))) |
105 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ ((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀)) = ∪
((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) |
106 | 105 | cncnpi 22429 |
. . . . . . 7
⊢ (((𝐹 ↾ (0(ball‘(abs
∘ − ))𝑀))
∈ (((TopOpen‘ℂfld) ↾t
(0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld))
∧ 𝑎 ∈ ∪ ((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀))) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
((((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎)) |
107 | 99, 104, 106 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
((((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎)) |
108 | | cnex 10952 |
. . . . . . . . . . 11
⊢ ℂ
∈ V |
109 | 108, 11 | ssexi 5246 |
. . . . . . . . . 10
⊢ 𝑆 ∈ V |
110 | 109 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑆 ∈ V) |
111 | | restabs 22316 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ Top ∧
(0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ∧ 𝑆 ∈ V) →
(((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) =
((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀))) |
112 | 100, 67, 110, 111 | mp3an2i 1465 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) →
(((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) =
((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀))) |
113 | 112 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) →
((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))) |
114 | 113 | fveq1d 6776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) →
(((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎) = ((((TopOpen‘ℂfld)
↾t (0(ball‘(abs ∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎)) |
115 | 107, 114 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
(((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎)) |
116 | | resttop 22311 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
117 | 100, 109,
116 | mp2an 689 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top |
118 | 117 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
119 | | df-ss 3904 |
. . . . . . . . . 10
⊢
((0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ↔ ((0(ball‘(abs ∘ −
))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘
− ))𝑀)) |
120 | 67, 119 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((0(ball‘(abs ∘ −
))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘
− ))𝑀)) |
121 | 93 | cnfldtopn 23945 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
122 | 121 | blopn 23656 |
. . . . . . . . . . 11
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 𝑀 ∈
ℝ*) → (0(ball‘(abs ∘ − ))𝑀) ∈
(TopOpen‘ℂfld)) |
123 | 55, 14, 58, 122 | mp3an12i 1464 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) ∈
(TopOpen‘ℂfld)) |
124 | | elrestr 17139 |
. . . . . . . . . 10
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V ∧
(0(ball‘(abs ∘ − ))𝑀) ∈
(TopOpen‘ℂfld)) → ((0(ball‘(abs ∘
− ))𝑀) ∩ 𝑆) ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
125 | 100, 109,
123, 124 | mp3an12i 1464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((0(ball‘(abs ∘ −
))𝑀) ∩ 𝑆) ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
126 | 120, 125 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))𝑀) ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
127 | | isopn3i 22233 |
. . . . . . . 8
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧
(0(ball‘(abs ∘ − ))𝑀) ∈
((TopOpen‘ℂfld) ↾t 𝑆)) →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs
∘ − ))𝑀)) =
(0(ball‘(abs ∘ − ))𝑀)) |
128 | 117, 126,
127 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs
∘ − ))𝑀)) =
(0(ball‘(abs ∘ − ))𝑀)) |
129 | 61, 128 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs
∘ − ))𝑀))) |
130 | 90 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) |
131 | 101 | restuni 22313 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
132 | 100, 11, 131 | mp2an 689 |
. . . . . . 7
⊢ 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆) |
133 | 132, 101 | cnprest 22440 |
. . . . . 6
⊢
(((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧
(0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆) ∧ (𝑎 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs
∘ − ))𝑀)) ∧
𝐹:𝑆⟶ℂ)) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
(((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎))) |
134 | 118, 67, 129, 130, 133 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ −
))𝑀)) ∈
(((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs
∘ − ))𝑀)) CnP
(TopOpen‘ℂfld))‘𝑎))) |
135 | 115, 134 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎)) |
136 | 135 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎)) |
137 | | resttopon 22312 |
. . . . 5
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
138 | 95, 11, 137 | mp2an 689 |
. . . 4
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) |
139 | | cncnp 22431 |
. . . 4
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
(𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎 ∈ 𝑆 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎)))) |
140 | 138, 95, 139 | mp2an 689 |
. . 3
⊢ (𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎 ∈ 𝑆 𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑆) CnP
(TopOpen‘ℂfld))‘𝑎))) |
141 | 90, 136, 140 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑆) Cn
(TopOpen‘ℂfld))) |
142 | | eqid 2738 |
. . . 4
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
143 | 93, 142, 96 | cncfcn 24073 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑆–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝑆) Cn
(TopOpen‘ℂfld))) |
144 | 11, 92, 143 | mp2an 689 |
. 2
⊢ (𝑆–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝑆) Cn
(TopOpen‘ℂfld)) |
145 | 141, 144 | eleqtrrdi 2850 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |