MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Visualization version   GIF version

Theorem psercn 26393
Description: An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercn (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercn
Dummy variables 𝑘 𝑠 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 15709 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
21rgenw 3056 . . . . 5 𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
3 pserf.f . . . . . 6 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
43fnmpt 6683 . . . . 5 (∀𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V → 𝐹 Fn 𝑆)
52, 4mp1i 13 . . . 4 (𝜑𝐹 Fn 𝑆)
6 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
7 cnvimass 6074 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
8 absf 15361 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
98fdmi 6722 . . . . . . . . . . . 12 dom abs = ℂ
107, 9sseqtri 4012 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
116, 10eqsstri 4010 . . . . . . . . . 10 𝑆 ⊆ ℂ
1211a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
1312sselda 3963 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
14 0cn 11232 . . . . . . . . . . 11 0 ∈ ℂ
15 eqid 2736 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 24714 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
1714, 13, 16sylancr 587 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
18 abssub 15350 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
1914, 13, 18sylancr 587 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
2013subid1d 11588 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 − 0) = 𝑎)
2120fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(𝑎 − 0)) = (abs‘𝑎))
2217, 19, 213eqtrd 2775 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘𝑎))
23 breq2 5128 . . . . . . . . . . 11 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 breq2 5128 . . . . . . . . . . 11 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
25 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎𝑆)
2625, 6eleqtrdi 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
27 ffn 6711 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
28 elpreima 7053 . . . . . . . . . . . . . . . . . 18 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3026, 29sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3130simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
32 0re 11242 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
33 iccssxr 13452 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ⊆ ℝ*
34 pserf.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
35 pserf.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ0⟶ℂ)
36 pserf.r . . . . . . . . . . . . . . . . . . 19 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3734, 35, 36radcnvcl 26383 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ (0[,]+∞))
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3933, 38sselid 3961 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
40 elico2 13432 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4132, 39, 40sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4231, 41mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4342simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4443adantr 480 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
4513abscld 15460 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
46 avglt1 12484 . . . . . . . . . . . . 13 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4745, 46sylan 580 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4844, 47mpbid 232 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4945ltp1d 12177 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5049adantr 480 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5123, 24, 48, 50ifbothda 4544 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
52 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
5351, 52breqtrrdi 5166 . . . . . . . . 9 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5422, 53eqbrtrd 5146 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) < 𝑀)
55 cnxmet 24716 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
5634, 3, 35, 36, 6, 52psercnlem1 26392 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
5756simp1d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
5857rpxrd 13057 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
59 elbl 24332 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6055, 14, 58, 59mp3an12i 1467 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6113, 54, 60mpbir2and 713 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
6261fvresd 6901 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) = (𝐹𝑎))
633reseq1i 5967 . . . . . . . . . 10 (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀))
6434, 3, 35, 36, 6, 56psercnlem2 26391 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
6564simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
6664simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
6765, 66sstrd 3974 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆)
6867resmptd 6032 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
6963, 68eqtrid 2783 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
70 eqid 2736 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
7135adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
72 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐺𝑘) = (𝐺𝑦))
7372seqeq3d 14032 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 → seq0( + , (𝐺𝑘)) = seq0( + , (𝐺𝑦)))
7473fveq1d 6883 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (seq0( + , (𝐺𝑘))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑠))
7574cbvmptv 5230 . . . . . . . . . . . 12 (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠))
76 fveq2 6881 . . . . . . . . . . . . 13 (𝑠 = 𝑖 → (seq0( + , (𝐺𝑦))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑖))
7776mpteq2dv 5220 . . . . . . . . . . . 12 (𝑠 = 𝑖 → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7875, 77eqtrid 2783 . . . . . . . . . . 11 (𝑠 = 𝑖 → (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7978cbvmptv 5230 . . . . . . . . . 10 (𝑠 ∈ ℕ0 ↦ (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠))) = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8057rpred 13056 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
8156simp3d 1144 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
8234, 70, 71, 36, 79, 80, 81, 65psercn2 26389 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
8369, 82eqeltrd 2835 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
84 cncff 24842 . . . . . . . 8 ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8583, 84syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8685, 61ffvelcdmd 7080 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) ∈ ℂ)
8762, 86eqeltrrd 2836 . . . . 5 ((𝜑𝑎𝑆) → (𝐹𝑎) ∈ ℂ)
8887ralrimiva 3133 . . . 4 (𝜑 → ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ)
89 ffnfv 7114 . . . 4 (𝐹:𝑆⟶ℂ ↔ (𝐹 Fn 𝑆 ∧ ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ))
905, 88, 89sylanbrc 583 . . 3 (𝜑𝐹:𝑆⟶ℂ)
9167, 11sstrdi 3976 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ)
92 ssid 3986 . . . . . . . . 9 ℂ ⊆ ℂ
93 eqid 2736 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
94 eqid 2736 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
9593cnfldtopon 24726 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9695toponrestid 22864 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
9793, 94, 96cncfcn 24859 . . . . . . . . 9 (((0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9891, 92, 97sylancl 586 . . . . . . . 8 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9983, 98eleqtrd 2837 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
10093cnfldtop 24727 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
101 unicntop 24729 . . . . . . . . . 10 ℂ = (TopOpen‘ℂfld)
102101restuni 23105 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
103100, 91, 102sylancr 587 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
10461, 103eleqtrd 2837 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
105 eqid 2736 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
106105cncnpi 23221 . . . . . . 7 (((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)) ∧ 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
10799, 104, 106syl2anc 584 . . . . . 6 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
108 cnex 11215 . . . . . . . . . . 11 ℂ ∈ V
109108, 11ssexi 5297 . . . . . . . . . 10 𝑆 ∈ V
110109a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑆 ∈ V)
111 restabs 23108 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
112100, 67, 110, 111mp3an2i 1468 . . . . . . . 8 ((𝜑𝑎𝑆) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
113112oveq1d 7425 . . . . . . 7 ((𝜑𝑎𝑆) → ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)))
114113fveq1d 6883 . . . . . 6 ((𝜑𝑎𝑆) → (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎) = ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
115107, 114eleqtrrd 2838 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
116 resttop 23103 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
117100, 109, 116mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
118117a1i 11 . . . . . 6 ((𝜑𝑎𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
119 dfss2 3949 . . . . . . . . . 10 ((0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ↔ ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12067, 119sylib 218 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12193cnfldtopn 24725 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
122121blopn 24444 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
12355, 14, 58, 122mp3an12i 1467 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
124 elrestr 17447 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld)) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
125100, 109, 123, 124mp3an12i 1467 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
126120, 125eqeltrrd 2836 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
127 isopn3i 23025 . . . . . . . 8 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
128117, 126, 127sylancr 587 . . . . . . 7 ((𝜑𝑎𝑆) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
12961, 128eleqtrrd 2838 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)))
13090adantr 480 . . . . . 6 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
131101restuni 23105 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
132100, 11, 131mp2an 692 . . . . . . 7 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
133132, 101cnprest 23232 . . . . . 6 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆) ∧ (𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
134118, 67, 129, 130, 133syl22anc 838 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
135115, 134mpbird 257 . . . 4 ((𝜑𝑎𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
136135ralrimiva 3133 . . 3 (𝜑 → ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
137 resttopon 23104 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
13895, 11, 137mp2an 692 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
139 cncnp 23223 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))))
140138, 95, 139mp2an 692 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎)))
14190, 136, 140sylanbrc 583 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
142 eqid 2736 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
14393, 142, 96cncfcn 24859 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
14411, 92, 143mp2an 692 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
145141, 144eleqtrrdi 2846 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  cin 3930  wss 3931  ifcif 4505   cuni 4888   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  cres 5661  cima 5662  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  0cn0 12506  +crp 13013  [,)cico 13369  [,]cicc 13370  seqcseq 14024  cexp 14084  abscabs 15258  cli 15505  Σcsu 15707  t crest 17439  TopOpenctopn 17440  ∞Metcxmet 21305  ballcbl 21307  fldccnfld 21320  Topctop 22836  TopOnctopon 22853  intcnt 22960   Cn ccn 23167   CnP ccnp 23168  cnccncf 24825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-cn 23170  df-cnp 23171  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-ulm 26343
This theorem is referenced by:  pserdvlem2  26395  pserdv  26396  abelth  26408  logtayl  26626
  Copyright terms: Public domain W3C validator