MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Visualization version   GIF version

Theorem psercn 26352
Description: An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercn (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercn
Dummy variables 𝑘 𝑠 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 15613 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
21rgenw 3048 . . . . 5 𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
3 pserf.f . . . . . 6 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
43fnmpt 6626 . . . . 5 (∀𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V → 𝐹 Fn 𝑆)
52, 4mp1i 13 . . . 4 (𝜑𝐹 Fn 𝑆)
6 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
7 cnvimass 6037 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
8 absf 15263 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
98fdmi 6667 . . . . . . . . . . . 12 dom abs = ℂ
107, 9sseqtri 3986 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
116, 10eqsstri 3984 . . . . . . . . . 10 𝑆 ⊆ ℂ
1211a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
1312sselda 3937 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
14 0cn 11126 . . . . . . . . . . 11 0 ∈ ℂ
15 eqid 2729 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 24674 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
1714, 13, 16sylancr 587 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
18 abssub 15252 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
1914, 13, 18sylancr 587 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
2013subid1d 11482 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 − 0) = 𝑎)
2120fveq2d 6830 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(𝑎 − 0)) = (abs‘𝑎))
2217, 19, 213eqtrd 2768 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘𝑎))
23 breq2 5099 . . . . . . . . . . 11 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 breq2 5099 . . . . . . . . . . 11 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
25 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎𝑆)
2625, 6eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
27 ffn 6656 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
28 elpreima 6996 . . . . . . . . . . . . . . . . . 18 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3026, 29sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3130simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
32 0re 11136 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
33 iccssxr 13351 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ⊆ ℝ*
34 pserf.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
35 pserf.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ0⟶ℂ)
36 pserf.r . . . . . . . . . . . . . . . . . . 19 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3734, 35, 36radcnvcl 26342 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ (0[,]+∞))
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3933, 38sselid 3935 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
40 elico2 13331 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4132, 39, 40sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4231, 41mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4342simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4443adantr 480 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
4513abscld 15364 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
46 avglt1 12380 . . . . . . . . . . . . 13 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4745, 46sylan 580 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4844, 47mpbid 232 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4945ltp1d 12073 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5049adantr 480 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5123, 24, 48, 50ifbothda 4517 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
52 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
5351, 52breqtrrdi 5137 . . . . . . . . 9 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5422, 53eqbrtrd 5117 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) < 𝑀)
55 cnxmet 24676 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
5634, 3, 35, 36, 6, 52psercnlem1 26351 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
5756simp1d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
5857rpxrd 12956 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
59 elbl 24292 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6055, 14, 58, 59mp3an12i 1467 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6113, 54, 60mpbir2and 713 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
6261fvresd 6846 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) = (𝐹𝑎))
633reseq1i 5930 . . . . . . . . . 10 (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀))
6434, 3, 35, 36, 6, 56psercnlem2 26350 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
6564simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
6664simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
6765, 66sstrd 3948 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆)
6867resmptd 5995 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
6963, 68eqtrid 2776 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
70 eqid 2729 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
7135adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
72 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐺𝑘) = (𝐺𝑦))
7372seqeq3d 13934 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 → seq0( + , (𝐺𝑘)) = seq0( + , (𝐺𝑦)))
7473fveq1d 6828 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (seq0( + , (𝐺𝑘))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑠))
7574cbvmptv 5199 . . . . . . . . . . . 12 (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠))
76 fveq2 6826 . . . . . . . . . . . . 13 (𝑠 = 𝑖 → (seq0( + , (𝐺𝑦))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑖))
7776mpteq2dv 5189 . . . . . . . . . . . 12 (𝑠 = 𝑖 → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7875, 77eqtrid 2776 . . . . . . . . . . 11 (𝑠 = 𝑖 → (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
7978cbvmptv 5199 . . . . . . . . . 10 (𝑠 ∈ ℕ0 ↦ (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠))) = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8057rpred 12955 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
8156simp3d 1144 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
8234, 70, 71, 36, 79, 80, 81, 65psercn2 26348 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
8369, 82eqeltrd 2828 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
84 cncff 24802 . . . . . . . 8 ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8583, 84syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8685, 61ffvelcdmd 7023 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) ∈ ℂ)
8762, 86eqeltrrd 2829 . . . . 5 ((𝜑𝑎𝑆) → (𝐹𝑎) ∈ ℂ)
8887ralrimiva 3121 . . . 4 (𝜑 → ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ)
89 ffnfv 7057 . . . 4 (𝐹:𝑆⟶ℂ ↔ (𝐹 Fn 𝑆 ∧ ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ))
905, 88, 89sylanbrc 583 . . 3 (𝜑𝐹:𝑆⟶ℂ)
9167, 11sstrdi 3950 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ)
92 ssid 3960 . . . . . . . . 9 ℂ ⊆ ℂ
93 eqid 2729 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
94 eqid 2729 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
9593cnfldtopon 24686 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9695toponrestid 22824 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
9793, 94, 96cncfcn 24819 . . . . . . . . 9 (((0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9891, 92, 97sylancl 586 . . . . . . . 8 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
9983, 98eleqtrd 2830 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
10093cnfldtop 24687 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
101 unicntop 24689 . . . . . . . . . 10 ℂ = (TopOpen‘ℂfld)
102101restuni 23065 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
103100, 91, 102sylancr 587 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
10461, 103eleqtrd 2830 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
105 eqid 2729 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
106105cncnpi 23181 . . . . . . 7 (((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)) ∧ 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
10799, 104, 106syl2anc 584 . . . . . 6 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
108 cnex 11109 . . . . . . . . . . 11 ℂ ∈ V
109108, 11ssexi 5264 . . . . . . . . . 10 𝑆 ∈ V
110109a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑆 ∈ V)
111 restabs 23068 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
112100, 67, 110, 111mp3an2i 1468 . . . . . . . 8 ((𝜑𝑎𝑆) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
113112oveq1d 7368 . . . . . . 7 ((𝜑𝑎𝑆) → ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)))
114113fveq1d 6828 . . . . . 6 ((𝜑𝑎𝑆) → (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎) = ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
115107, 114eleqtrrd 2831 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
116 resttop 23063 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
117100, 109, 116mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
118117a1i 11 . . . . . 6 ((𝜑𝑎𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
119 dfss2 3923 . . . . . . . . . 10 ((0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ↔ ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12067, 119sylib 218 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12193cnfldtopn 24685 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
122121blopn 24404 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
12355, 14, 58, 122mp3an12i 1467 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
124 elrestr 17350 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld)) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
125100, 109, 123, 124mp3an12i 1467 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
126120, 125eqeltrrd 2829 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
127 isopn3i 22985 . . . . . . . 8 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
128117, 126, 127sylancr 587 . . . . . . 7 ((𝜑𝑎𝑆) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
12961, 128eleqtrrd 2831 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)))
13090adantr 480 . . . . . 6 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
131101restuni 23065 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
132100, 11, 131mp2an 692 . . . . . . 7 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
133132, 101cnprest 23192 . . . . . 6 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆) ∧ (𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
134118, 67, 129, 130, 133syl22anc 838 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
135115, 134mpbird 257 . . . 4 ((𝜑𝑎𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
136135ralrimiva 3121 . . 3 (𝜑 → ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
137 resttopon 23064 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
13895, 11, 137mp2an 692 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
139 cncnp 23183 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))))
140138, 95, 139mp2an 692 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎)))
14190, 136, 140sylanbrc 583 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
142 eqid 2729 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
14393, 142, 96cncfcn 24819 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
14411, 92, 143mp2an 692 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
145141, 144eleqtrrdi 2839 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cin 3904  wss 3905  ifcif 4478   cuni 4861   class class class wbr 5095  cmpt 5176  ccnv 5622  dom cdm 5623  cres 5625  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  0cn0 12402  +crp 12911  [,)cico 13268  [,]cicc 13269  seqcseq 13926  cexp 13986  abscabs 15159  cli 15409  Σcsu 15611  t crest 17342  TopOpenctopn 17343  ∞Metcxmet 21264  ballcbl 21266  fldccnfld 21279  Topctop 22796  TopOnctopon 22813  intcnt 22920   Cn ccn 23127   CnP ccnp 23128  cnccncf 24785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-ntr 22923  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ulm 26302
This theorem is referenced by:  pserdvlem2  26354  pserdv  26355  abelth  26367  logtayl  26585
  Copyright terms: Public domain W3C validator