Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5149 (class class class)co 7409
1c1 11111 + caddc 11113 < clt 11248
2c2 12267 3c3 12268 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-2 12275
df-3 12276 |
This theorem is referenced by: 1lt3
12385 2lt4
12387 2lt6
12396 2lt7
12402 2lt8
12409 2lt9
12417 3halfnz
12641 2lt10
12815 uzuzle23
12873 uz3m2nn
12875 fztpval
13563 expnass
14172 s4fv2
14848 f1oun2prg
14868 caucvgrlem
15619 cos01gt0
16134 3lcm2e6
16668 5prm
17042 11prm
17048 17prm
17050 23prm
17052 83prm
17056 317prm
17059 4001lem4
17077 plusgndxnmulrndx
17242 rngstr
17243 slotsdifunifndx
17346 oppraddOLD
20160 cnfldstr
20946 cnfldfunALTOLD
20958 2logb9irr
26300 2logb3irr
26302 log2le1
26455 chtub
26715 bpos1
26786 bposlem6
26792 chto1ub
26979 dchrvmasumiflem1
27004 istrkg3ld
27712 tgcgr4
27782 axlowdimlem2
28201 axlowdimlem16
28215 axlowdimlem17
28216 axlowdim
28219 usgrexmpldifpr
28515 upgr3v3e3cycl
29433 konigsbergiedgw
29501 konigsberglem1
29505 konigsberglem2
29506 konigsberglem3
29507 ex-pss
29681 ex-res
29694 ex-fv
29696 ex-fl
29700 ex-mod
29702 prodfzo03
33615 cnndvlem1
35413 poimirlem9
36497 3lexlogpow2ineq1
40923 aks4d1p1p6
40938 aks4d1p1p5
40940 2ap1caineq
40961 rabren3dioph
41553 jm2.20nn
41736 mnringaddgdOLD
42977 wallispilem4
44784 fourierdlem87
44909 smfmullem4
45510 257prm
46229 31prm
46265 9fppr8
46405 fpprel2
46409 nnsum3primes4
46456 nnsum3primesgbe
46460 nnsum3primesle9
46462 nnsum4primesodd
46464 nnsum4primesoddALTV
46465 tgoldbach
46485 zlmodzxznm
47178 zlmodzxzldeplem
47179 sepfsepc
47560 |