Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11977 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 11809 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 11967 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 5097 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 (class class class)co 7255 1c1 10803 + caddc 10805 < clt 10940 2c2 11958 3c3 11959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 |
This theorem is referenced by: 1lt3 12076 2lt4 12078 2lt6 12087 2lt7 12093 2lt8 12100 2lt9 12108 3halfnz 12329 2lt10 12504 uzuzle23 12558 uz3m2nn 12560 fztpval 13247 expnass 13852 s4fv2 14538 f1oun2prg 14558 caucvgrlem 15312 cos01gt0 15828 3lcm2e6 16364 5prm 16738 11prm 16744 17prm 16746 23prm 16748 83prm 16752 317prm 16755 4001lem4 16773 plusgndxnmulrndx 16933 rngstr 16934 oppraddOLD 19787 cnfldstr 20512 cnfldfun 20522 2logb9irr 25850 2logb3irr 25852 log2le1 26005 chtub 26265 bpos1 26336 bposlem6 26342 chto1ub 26529 dchrvmasumiflem1 26554 istrkg3ld 26726 tgcgr4 26796 axlowdimlem2 27214 axlowdimlem16 27228 axlowdimlem17 27229 axlowdim 27232 usgrexmpldifpr 27528 upgr3v3e3cycl 28445 konigsbergiedgw 28513 konigsberglem1 28517 konigsberglem2 28518 konigsberglem3 28519 ex-pss 28693 ex-res 28706 ex-fv 28708 ex-fl 28712 ex-mod 28714 prodfzo03 32483 cnndvlem1 34644 poimirlem9 35713 3lexlogpow2ineq1 39994 aks4d1p1p6 40009 aks4d1p1p5 40011 2ap1caineq 40029 rabren3dioph 40553 jm2.20nn 40735 mnringaddgdOLD 41725 wallispilem4 43499 fourierdlem87 43624 smfmullem4 44215 257prm 44901 31prm 44937 9fppr8 45077 fpprel2 45081 nnsum3primes4 45128 nnsum3primesgbe 45132 nnsum3primesle9 45134 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 tgoldbach 45157 zlmodzxznm 45726 zlmodzxzldeplem 45727 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |