| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12220 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12047 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12210 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5122 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7353 1c1 11029 + caddc 11031 < clt 11168 2c2 12201 3c3 12202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-2 12209 df-3 12210 |
| This theorem is referenced by: 1lt3 12314 2lt4 12316 2lt6 12325 2lt7 12331 2lt8 12338 2lt9 12346 3halfnz 12573 2lt10 12747 uzuzle23 12803 uz3m2nn 12813 fztpval 13507 fvf1tp 13711 expnass 14133 hash3tpde 14418 tpf1ofv2 14423 tpfo 14425 s4fv2 14822 f1oun2prg 14842 caucvgrlem 15598 cos01gt0 16118 3lcm2e6 16661 5prm 17038 11prm 17044 17prm 17046 23prm 17048 83prm 17052 317prm 17055 4001lem4 17073 plusgndxnmulrndx 17219 rngstr 17220 slotsdifunifndx 17323 cnfldstr 21281 cnfldstrOLD 21296 2logb9irr 26721 2logb3irr 26723 log2le1 26876 chtub 27139 bpos1 27210 bposlem6 27216 chto1ub 27403 dchrvmasumiflem1 27428 istrkg3ld 28424 tgcgr4 28494 axlowdimlem2 28906 axlowdimlem16 28920 axlowdimlem17 28921 axlowdim 28924 usgrexmpldifpr 29221 upgr3v3e3cycl 30142 konigsbergiedgw 30210 konigsberglem1 30214 konigsberglem2 30215 konigsberglem3 30216 ex-pss 30390 ex-res 30403 ex-fv 30405 ex-fl 30409 ex-mod 30411 evl1deg3 33526 2sqr3minply 33749 2sqr3nconstr 33750 cos9thpinconstrlem2 33759 prodfzo03 34573 cnndvlem1 36513 poimirlem9 37611 3lexlogpow2ineq1 42034 aks4d1p1p6 42049 aks4d1p1p5 42051 2ap1caineq 42121 rabren3dioph 42791 jm2.20nn 42973 wallispilem4 46053 fourierdlem87 46178 smfmullem4 46779 257prm 47549 31prm 47585 9fppr8 47725 fpprel2 47729 nnsum3primes4 47776 nnsum3primesgbe 47780 nnsum3primesle9 47782 nnsum4primesodd 47784 nnsum4primesoddALTV 47785 tgoldbach 47805 cycl3grtri 47935 usgrexmpl1lem 48009 usgrexmpl2lem 48014 usgrexmpl2nb2 48021 usgrexmpl2nb3 48022 usgrexmpl2trifr 48025 gpg3nbgrvtx0 48064 gpg3kgrtriexlem1 48071 zlmodzxznm 48486 zlmodzxzldeplem 48487 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |