| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12208 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12035 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12198 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5122 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7354 1c1 11016 + caddc 11018 < clt 11155 2c2 12189 3c3 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-2 12197 df-3 12198 |
| This theorem is referenced by: 1lt3 12302 2lt4 12304 2lt6 12313 2lt7 12319 2lt8 12326 2lt9 12334 3halfnz 12560 2lt10 12734 uzuzle23 12786 uz3m2nn 12796 fztpval 13490 fvf1tp 13697 expnass 14119 hash3tpde 14404 tpf1ofv2 14409 tpfo 14411 s4fv2 14808 f1oun2prg 14828 caucvgrlem 15584 cos01gt0 16104 3lcm2e6 16647 5prm 17024 11prm 17030 17prm 17032 23prm 17034 83prm 17038 317prm 17041 4001lem4 17059 plusgndxnmulrndx 17205 rngstr 17206 slotsdifunifndx 17309 cnfldstr 21297 cnfldstrOLD 21312 2logb9irr 26735 2logb3irr 26737 log2le1 26890 chtub 27153 bpos1 27224 bposlem6 27230 chto1ub 27417 dchrvmasumiflem1 27442 istrkg3ld 28442 tgcgr4 28512 axlowdimlem2 28925 axlowdimlem16 28939 axlowdimlem17 28940 axlowdim 28943 usgrexmpldifpr 29240 upgr3v3e3cycl 30164 konigsbergiedgw 30232 konigsberglem1 30236 konigsberglem2 30237 konigsberglem3 30238 ex-pss 30412 ex-res 30425 ex-fv 30427 ex-fl 30431 ex-mod 30433 evl1deg3 33550 2sqr3minply 33816 2sqr3nconstr 33817 cos9thpinconstrlem2 33826 prodfzo03 34639 cnndvlem1 36604 poimirlem9 37692 3lexlogpow2ineq1 42174 aks4d1p1p6 42189 aks4d1p1p5 42191 2ap1caineq 42261 rabren3dioph 42935 jm2.20nn 43117 wallispilem4 46193 fourierdlem87 46318 smfmullem4 46919 257prm 47688 31prm 47724 9fppr8 47864 fpprel2 47868 nnsum3primes4 47915 nnsum3primesgbe 47919 nnsum3primesle9 47921 nnsum4primesodd 47923 nnsum4primesoddALTV 47924 tgoldbach 47944 cycl3grtri 48074 usgrexmpl1lem 48148 usgrexmpl2lem 48153 usgrexmpl2nb2 48160 usgrexmpl2nb3 48161 usgrexmpl2trifr 48164 gpg3nbgrvtx0 48203 gpg3kgrtriexlem1 48210 zlmodzxznm 48625 zlmodzxzldeplem 48626 sepfsepc 49055 |
| Copyright terms: Public domain | W3C validator |