Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12126 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 11958 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 12116 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 5113 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5086 (class class class)co 7316 1c1 10951 + caddc 10953 < clt 11088 2c2 12107 3c3 12108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-2 12115 df-3 12116 |
This theorem is referenced by: 1lt3 12225 2lt4 12227 2lt6 12236 2lt7 12242 2lt8 12249 2lt9 12257 3halfnz 12478 2lt10 12654 uzuzle23 12708 uz3m2nn 12710 fztpval 13397 expnass 14003 s4fv2 14686 f1oun2prg 14706 caucvgrlem 15460 cos01gt0 15976 3lcm2e6 16510 5prm 16884 11prm 16890 17prm 16892 23prm 16894 83prm 16898 317prm 16901 4001lem4 16919 plusgndxnmulrndx 17081 rngstr 17082 slotsdifunifndx 17185 oppraddOLD 19944 cnfldstr 20679 cnfldfunALTOLD 20691 2logb9irr 26025 2logb3irr 26027 log2le1 26180 chtub 26440 bpos1 26511 bposlem6 26517 chto1ub 26704 dchrvmasumiflem1 26729 istrkg3ld 26955 tgcgr4 27025 axlowdimlem2 27444 axlowdimlem16 27458 axlowdimlem17 27459 axlowdim 27462 usgrexmpldifpr 27758 upgr3v3e3cycl 28676 konigsbergiedgw 28744 konigsberglem1 28748 konigsberglem2 28749 konigsberglem3 28750 ex-pss 28924 ex-res 28937 ex-fv 28939 ex-fl 28943 ex-mod 28945 prodfzo03 32719 cnndvlem1 34787 poimirlem9 35863 3lexlogpow2ineq1 40292 aks4d1p1p6 40307 aks4d1p1p5 40309 2ap1caineq 40330 rabren3dioph 40858 jm2.20nn 41041 mnringaddgdOLD 42075 wallispilem4 43864 fourierdlem87 43989 smfmullem4 44588 257prm 45283 31prm 45319 9fppr8 45459 fpprel2 45463 nnsum3primes4 45510 nnsum3primesgbe 45514 nnsum3primesle9 45516 nnsum4primesodd 45518 nnsum4primesoddALTV 45519 tgoldbach 45539 zlmodzxznm 46108 zlmodzxzldeplem 46109 sepfsepc 46491 |
Copyright terms: Public domain | W3C validator |