| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12312 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12144 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12302 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5146 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 (class class class)co 7403 1c1 11128 + caddc 11130 < clt 11267 2c2 12293 3c3 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-2 12301 df-3 12302 |
| This theorem is referenced by: 1lt3 12411 2lt4 12413 2lt6 12422 2lt7 12428 2lt8 12435 2lt9 12443 3halfnz 12670 2lt10 12844 uzuzle23 12903 uz3m2nn 12905 fztpval 13601 fvf1tp 13804 expnass 14224 hash3tpde 14509 tpf1ofv2 14514 tpfo 14516 s4fv2 14914 f1oun2prg 14934 caucvgrlem 15687 cos01gt0 16207 3lcm2e6 16749 5prm 17126 11prm 17132 17prm 17134 23prm 17136 83prm 17140 317prm 17143 4001lem4 17161 plusgndxnmulrndx 17309 rngstr 17310 slotsdifunifndx 17413 cnfldstr 21315 cnfldstrOLD 21330 2logb9irr 26755 2logb3irr 26757 log2le1 26910 chtub 27173 bpos1 27244 bposlem6 27250 chto1ub 27437 dchrvmasumiflem1 27462 istrkg3ld 28386 tgcgr4 28456 axlowdimlem2 28868 axlowdimlem16 28882 axlowdimlem17 28883 axlowdim 28886 usgrexmpldifpr 29183 upgr3v3e3cycl 30107 konigsbergiedgw 30175 konigsberglem1 30179 konigsberglem2 30180 konigsberglem3 30181 ex-pss 30355 ex-res 30368 ex-fv 30370 ex-fl 30374 ex-mod 30376 evl1deg3 33537 2sqr3minply 33760 2sqr3nconstr 33761 prodfzo03 34581 cnndvlem1 36501 poimirlem9 37599 3lexlogpow2ineq1 42017 aks4d1p1p6 42032 aks4d1p1p5 42034 2ap1caineq 42104 rabren3dioph 42785 jm2.20nn 42968 wallispilem4 46045 fourierdlem87 46170 smfmullem4 46771 257prm 47523 31prm 47559 9fppr8 47699 fpprel2 47703 nnsum3primes4 47750 nnsum3primesgbe 47754 nnsum3primesle9 47756 nnsum4primesodd 47758 nnsum4primesoddALTV 47759 tgoldbach 47779 cycl3grtri 47907 usgrexmpl1lem 47973 usgrexmpl2lem 47978 usgrexmpl2nb2 47985 usgrexmpl2nb3 47986 usgrexmpl2trifr 47989 gpg3nbgrvtx0 48026 gpg3kgrtriexlem1 48033 gpg5grlic 48041 zlmodzxznm 48421 zlmodzxzldeplem 48422 sepfsepc 48850 |
| Copyright terms: Public domain | W3C validator |