| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12199 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12026 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12189 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5118 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5091 (class class class)co 7346 1c1 11007 + caddc 11009 < clt 11146 2c2 12180 3c3 12181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-2 12188 df-3 12189 |
| This theorem is referenced by: 1lt3 12293 2lt4 12295 2lt6 12304 2lt7 12310 2lt8 12317 2lt9 12325 3halfnz 12552 2lt10 12726 uzuzle23 12782 uz3m2nn 12792 fztpval 13486 fvf1tp 13693 expnass 14115 hash3tpde 14400 tpf1ofv2 14405 tpfo 14407 s4fv2 14804 f1oun2prg 14824 caucvgrlem 15580 cos01gt0 16100 3lcm2e6 16643 5prm 17020 11prm 17026 17prm 17028 23prm 17030 83prm 17034 317prm 17037 4001lem4 17055 plusgndxnmulrndx 17201 rngstr 17202 slotsdifunifndx 17305 cnfldstr 21294 cnfldstrOLD 21309 2logb9irr 26733 2logb3irr 26735 log2le1 26888 chtub 27151 bpos1 27222 bposlem6 27228 chto1ub 27415 dchrvmasumiflem1 27440 istrkg3ld 28440 tgcgr4 28510 axlowdimlem2 28922 axlowdimlem16 28936 axlowdimlem17 28937 axlowdim 28940 usgrexmpldifpr 29237 upgr3v3e3cycl 30158 konigsbergiedgw 30226 konigsberglem1 30230 konigsberglem2 30231 konigsberglem3 30232 ex-pss 30406 ex-res 30419 ex-fv 30421 ex-fl 30425 ex-mod 30427 evl1deg3 33539 2sqr3minply 33791 2sqr3nconstr 33792 cos9thpinconstrlem2 33801 prodfzo03 34614 cnndvlem1 36577 poimirlem9 37675 3lexlogpow2ineq1 42097 aks4d1p1p6 42112 aks4d1p1p5 42114 2ap1caineq 42184 rabren3dioph 42854 jm2.20nn 43036 wallispilem4 46112 fourierdlem87 46237 smfmullem4 46838 257prm 47598 31prm 47634 9fppr8 47774 fpprel2 47778 nnsum3primes4 47825 nnsum3primesgbe 47829 nnsum3primesle9 47831 nnsum4primesodd 47833 nnsum4primesoddALTV 47834 tgoldbach 47854 cycl3grtri 47984 usgrexmpl1lem 48058 usgrexmpl2lem 48063 usgrexmpl2nb2 48070 usgrexmpl2nb3 48071 usgrexmpl2trifr 48074 gpg3nbgrvtx0 48113 gpg3kgrtriexlem1 48120 zlmodzxznm 48535 zlmodzxzldeplem 48536 sepfsepc 48965 |
| Copyright terms: Public domain | W3C validator |