Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5110 (class class class)co 7362
1c1 11059 + caddc 11061 < clt 11196
2c2 12215 3c3 12216 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-2 12223
df-3 12224 |
This theorem is referenced by: 1lt3
12333 2lt4
12335 2lt6
12344 2lt7
12350 2lt8
12357 2lt9
12365 3halfnz
12589 2lt10
12763 uzuzle23
12821 uz3m2nn
12823 fztpval
13510 expnass
14119 s4fv2
14793 f1oun2prg
14813 caucvgrlem
15564 cos01gt0
16080 3lcm2e6
16614 5prm
16988 11prm
16994 17prm
16996 23prm
16998 83prm
17002 317prm
17005 4001lem4
17023 plusgndxnmulrndx
17185 rngstr
17186 slotsdifunifndx
17289 oppraddOLD
20066 cnfldstr
20814 cnfldfunALTOLD
20826 2logb9irr
26161 2logb3irr
26163 log2le1
26316 chtub
26576 bpos1
26647 bposlem6
26653 chto1ub
26840 dchrvmasumiflem1
26865 istrkg3ld
27445 tgcgr4
27515 axlowdimlem2
27934 axlowdimlem16
27948 axlowdimlem17
27949 axlowdim
27952 usgrexmpldifpr
28248 upgr3v3e3cycl
29166 konigsbergiedgw
29234 konigsberglem1
29238 konigsberglem2
29239 konigsberglem3
29240 ex-pss
29414 ex-res
29427 ex-fv
29429 ex-fl
29433 ex-mod
29435 prodfzo03
33256 cnndvlem1
35029 poimirlem9
36116 3lexlogpow2ineq1
40544 aks4d1p1p6
40559 aks4d1p1p5
40561 2ap1caineq
40582 rabren3dioph
41167 jm2.20nn
41350 mnringaddgdOLD
42572 wallispilem4
44383 fourierdlem87
44508 smfmullem4
45109 257prm
45827 31prm
45863 9fppr8
46003 fpprel2
46007 nnsum3primes4
46054 nnsum3primesgbe
46058 nnsum3primesle9
46060 nnsum4primesodd
46062 nnsum4primesoddALTV
46063 tgoldbach
46083 zlmodzxznm
46652 zlmodzxzldeplem
46653 sepfsepc
47034 |