![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12337 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 12169 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 12327 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 5174 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5147 (class class class)co 7430 1c1 11153 + caddc 11155 < clt 11292 2c2 12318 3c3 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-2 12326 df-3 12327 |
This theorem is referenced by: 1lt3 12436 2lt4 12438 2lt6 12447 2lt7 12453 2lt8 12460 2lt9 12468 3halfnz 12694 2lt10 12868 uzuzle23 12928 uz3m2nn 12930 fztpval 13622 fvf1tp 13825 expnass 14243 hash3tpde 14528 tpf1ofv2 14533 tpfo 14535 s4fv2 14932 f1oun2prg 14952 caucvgrlem 15705 cos01gt0 16223 3lcm2e6 16765 5prm 17142 11prm 17148 17prm 17150 23prm 17152 83prm 17156 317prm 17159 4001lem4 17177 plusgndxnmulrndx 17342 rngstr 17343 slotsdifunifndx 17446 oppraddOLD 20360 cnfldstr 21383 cnfldstrOLD 21398 cnfldfunALTOLDOLD 21410 2logb9irr 26852 2logb3irr 26854 log2le1 27007 chtub 27270 bpos1 27341 bposlem6 27347 chto1ub 27534 dchrvmasumiflem1 27559 istrkg3ld 28483 tgcgr4 28553 axlowdimlem2 28972 axlowdimlem16 28986 axlowdimlem17 28987 axlowdim 28990 usgrexmpldifpr 29289 upgr3v3e3cycl 30208 konigsbergiedgw 30276 konigsberglem1 30280 konigsberglem2 30281 konigsberglem3 30282 ex-pss 30456 ex-res 30469 ex-fv 30471 ex-fl 30475 ex-mod 30477 evl1deg3 33582 2sqr3minply 33752 prodfzo03 34596 cnndvlem1 36519 poimirlem9 37615 3lexlogpow2ineq1 42039 aks4d1p1p6 42054 aks4d1p1p5 42056 2ap1caineq 42126 rabren3dioph 42802 jm2.20nn 42985 mnringaddgdOLD 44213 wallispilem4 46023 fourierdlem87 46148 smfmullem4 46749 257prm 47485 31prm 47521 9fppr8 47661 fpprel2 47665 nnsum3primes4 47712 nnsum3primesgbe 47716 nnsum3primesle9 47718 nnsum4primesodd 47720 nnsum4primesoddALTV 47721 tgoldbach 47741 usgrexmpl1lem 47915 usgrexmpl2lem 47920 usgrexmpl2nb2 47927 usgrexmpl2nb3 47928 usgrexmpl2trifr 47931 gpg3nbgrvtx0 47966 gpg5grlic 47974 zlmodzxznm 48342 zlmodzxzldeplem 48343 sepfsepc 48723 |
Copyright terms: Public domain | W3C validator |