Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12056 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 11888 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 12046 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 5102 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5075 (class class class)co 7284 1c1 10881 + caddc 10883 < clt 11018 2c2 12037 3c3 12038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-2 12045 df-3 12046 |
This theorem is referenced by: 1lt3 12155 2lt4 12157 2lt6 12166 2lt7 12172 2lt8 12179 2lt9 12187 3halfnz 12408 2lt10 12584 uzuzle23 12638 uz3m2nn 12640 fztpval 13327 expnass 13933 s4fv2 14619 f1oun2prg 14639 caucvgrlem 15393 cos01gt0 15909 3lcm2e6 16445 5prm 16819 11prm 16825 17prm 16827 23prm 16829 83prm 16833 317prm 16836 4001lem4 16854 plusgndxnmulrndx 17016 rngstr 17017 slotsdifunifndx 17120 oppraddOLD 19881 cnfldstr 20608 cnfldfunALTOLD 20620 2logb9irr 25954 2logb3irr 25956 log2le1 26109 chtub 26369 bpos1 26440 bposlem6 26446 chto1ub 26633 dchrvmasumiflem1 26658 istrkg3ld 26831 tgcgr4 26901 axlowdimlem2 27320 axlowdimlem16 27334 axlowdimlem17 27335 axlowdim 27338 usgrexmpldifpr 27634 upgr3v3e3cycl 28553 konigsbergiedgw 28621 konigsberglem1 28625 konigsberglem2 28626 konigsberglem3 28627 ex-pss 28801 ex-res 28814 ex-fv 28816 ex-fl 28820 ex-mod 28822 prodfzo03 32592 cnndvlem1 34726 poimirlem9 35795 3lexlogpow2ineq1 40073 aks4d1p1p6 40088 aks4d1p1p5 40090 2ap1caineq 40108 rabren3dioph 40644 jm2.20nn 40826 mnringaddgdOLD 41843 wallispilem4 43616 fourierdlem87 43741 smfmullem4 44339 257prm 45024 31prm 45060 9fppr8 45200 fpprel2 45204 nnsum3primes4 45251 nnsum3primesgbe 45255 nnsum3primesle9 45257 nnsum4primesodd 45259 nnsum4primesoddALTV 45260 tgoldbach 45280 zlmodzxznm 45849 zlmodzxzldeplem 45850 sepfsepc 46232 |
Copyright terms: Public domain | W3C validator |