| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12267 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12094 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12257 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5137 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 (class class class)co 7390 1c1 11076 + caddc 11078 < clt 11215 2c2 12248 3c3 12249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 |
| This theorem is referenced by: 1lt3 12361 2lt4 12363 2lt6 12372 2lt7 12378 2lt8 12385 2lt9 12393 3halfnz 12620 2lt10 12794 uzuzle23 12850 uz3m2nn 12860 fztpval 13554 fvf1tp 13758 expnass 14180 hash3tpde 14465 tpf1ofv2 14470 tpfo 14472 s4fv2 14870 f1oun2prg 14890 caucvgrlem 15646 cos01gt0 16166 3lcm2e6 16709 5prm 17086 11prm 17092 17prm 17094 23prm 17096 83prm 17100 317prm 17103 4001lem4 17121 plusgndxnmulrndx 17267 rngstr 17268 slotsdifunifndx 17371 cnfldstr 21273 cnfldstrOLD 21288 2logb9irr 26712 2logb3irr 26714 log2le1 26867 chtub 27130 bpos1 27201 bposlem6 27207 chto1ub 27394 dchrvmasumiflem1 27419 istrkg3ld 28395 tgcgr4 28465 axlowdimlem2 28877 axlowdimlem16 28891 axlowdimlem17 28892 axlowdim 28895 usgrexmpldifpr 29192 upgr3v3e3cycl 30116 konigsbergiedgw 30184 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 ex-pss 30364 ex-res 30377 ex-fv 30379 ex-fl 30383 ex-mod 30385 evl1deg3 33554 2sqr3minply 33777 2sqr3nconstr 33778 cos9thpinconstrlem2 33787 prodfzo03 34601 cnndvlem1 36532 poimirlem9 37630 3lexlogpow2ineq1 42053 aks4d1p1p6 42068 aks4d1p1p5 42070 2ap1caineq 42140 rabren3dioph 42810 jm2.20nn 42993 wallispilem4 46073 fourierdlem87 46198 smfmullem4 46799 257prm 47566 31prm 47602 9fppr8 47742 fpprel2 47746 nnsum3primes4 47793 nnsum3primesgbe 47797 nnsum3primesle9 47799 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 tgoldbach 47822 cycl3grtri 47950 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb2 48028 usgrexmpl2nb3 48029 usgrexmpl2trifr 48032 gpg3nbgrvtx0 48071 gpg3kgrtriexlem1 48078 zlmodzxznm 48490 zlmodzxzldeplem 48491 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |