| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12260 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 12087 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 12250 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 5134 | 1 ⊢ 2 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 (class class class)co 7387 1c1 11069 + caddc 11071 < clt 11208 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 |
| This theorem is referenced by: 1lt3 12354 2lt4 12356 2lt6 12365 2lt7 12371 2lt8 12378 2lt9 12386 3halfnz 12613 2lt10 12787 uzuzle23 12843 uz3m2nn 12853 fztpval 13547 fvf1tp 13751 expnass 14173 hash3tpde 14458 tpf1ofv2 14463 tpfo 14465 s4fv2 14863 f1oun2prg 14883 caucvgrlem 15639 cos01gt0 16159 3lcm2e6 16702 5prm 17079 11prm 17085 17prm 17087 23prm 17089 83prm 17093 317prm 17096 4001lem4 17114 plusgndxnmulrndx 17260 rngstr 17261 slotsdifunifndx 17364 cnfldstr 21266 cnfldstrOLD 21281 2logb9irr 26705 2logb3irr 26707 log2le1 26860 chtub 27123 bpos1 27194 bposlem6 27200 chto1ub 27387 dchrvmasumiflem1 27412 istrkg3ld 28388 tgcgr4 28458 axlowdimlem2 28870 axlowdimlem16 28884 axlowdimlem17 28885 axlowdim 28888 usgrexmpldifpr 29185 upgr3v3e3cycl 30109 konigsbergiedgw 30177 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 ex-pss 30357 ex-res 30370 ex-fv 30372 ex-fl 30376 ex-mod 30378 evl1deg3 33547 2sqr3minply 33770 2sqr3nconstr 33771 cos9thpinconstrlem2 33780 prodfzo03 34594 cnndvlem1 36525 poimirlem9 37623 3lexlogpow2ineq1 42046 aks4d1p1p6 42061 aks4d1p1p5 42063 2ap1caineq 42133 rabren3dioph 42803 jm2.20nn 42986 wallispilem4 46066 fourierdlem87 46191 smfmullem4 46792 257prm 47562 31prm 47598 9fppr8 47738 fpprel2 47742 nnsum3primes4 47789 nnsum3primesgbe 47793 nnsum3primesle9 47795 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 tgoldbach 47818 cycl3grtri 47946 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb2 48024 usgrexmpl2nb3 48025 usgrexmpl2trifr 48028 gpg3nbgrvtx0 48067 gpg3kgrtriexlem1 48074 zlmodzxznm 48486 zlmodzxzldeplem 48487 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |