Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoel Structured version   Visualization version   GIF version

Theorem ex-sategoel 32900
 Description: Instance of sategoelfv 32898 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoel
StepHypRef Expression
1 simpll 766 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
2 3simpa 1145 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
32adantl 485 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
4 sategoelfvb.s . . 3 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
5 ex-sategoelel.s . . 3 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
64, 5ex-sategoelel 32899 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
74sategoelfv 32898 . 2 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆𝐸) → (𝑆𝐴) ∈ (𝑆𝐵))
81, 3, 6, 7syl3anc 1368 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∅c0 4225  ifcif 4420  𝒫 cpw 4494   ↦ cmpt 5112  ‘cfv 6335  (class class class)co 7150  ωcom 7579  WUnicwun 10160  ∈𝑔cgoe 32811   Sat∈ csate 32816 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-ac2 9923 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-card 9401  df-ac 9576  df-wun 10162  df-goel 32818  df-gona 32819  df-goal 32820  df-sat 32821  df-sate 32822  df-fmla 32823 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator