| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoel | Structured version Visualization version GIF version | ||
| Description: Instance of sategoelfv 35393 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| sategoelfvb.s | ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) |
| ex-sategoelel.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) |
| Ref | Expression |
|---|---|
| ex-sategoel | ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑀 ∈ WUni) | |
| 2 | 3simpa 1148 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) |
| 4 | sategoelfvb.s | . . 3 ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) | |
| 5 | ex-sategoelel.s | . . 3 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) | |
| 6 | 4, 5 | ex-sategoelel 35394 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) |
| 7 | 4 | sategoelfv 35393 | . 2 ⊢ ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| 8 | 1, 3, 6, 7 | syl3anc 1373 | 1 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ifcif 4476 𝒫 cpw 4551 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ωcom 7799 WUnicwun 10594 ∈𝑔cgoe 35306 Sat∈ csate 35311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-ac 10010 df-wun 10596 df-goel 35313 df-gona 35314 df-goal 35315 df-sat 35316 df-sate 35317 df-fmla 35318 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |