| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoel | Structured version Visualization version GIF version | ||
| Description: Instance of sategoelfv 35380 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| sategoelfvb.s | ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) |
| ex-sategoelel.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) |
| Ref | Expression |
|---|---|
| ex-sategoel | ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑀 ∈ WUni) | |
| 2 | 3simpa 1148 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) |
| 4 | sategoelfvb.s | . . 3 ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) | |
| 5 | ex-sategoelel.s | . . 3 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) | |
| 6 | 4, 5 | ex-sategoelel 35381 | . 2 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) |
| 7 | 4 | sategoelfv 35380 | . 2 ⊢ ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| 8 | 1, 3, 6, 7 | syl3anc 1373 | 1 ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 ifcif 4484 𝒫 cpw 4559 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ωcom 7822 WUnicwun 10629 ∈𝑔cgoe 35293 Sat∈ csate 35298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-ac 10045 df-wun 10631 df-goel 35300 df-gona 35301 df-goal 35302 df-sat 35303 df-sate 35304 df-fmla 35305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |