Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoel Structured version   Visualization version   GIF version

Theorem ex-sategoel 34413
Description: Instance of sategoelfv 34411 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoel
StepHypRef Expression
1 simpll 766 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
2 3simpa 1149 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
32adantl 483 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
4 sategoelfvb.s . . 3 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
5 ex-sategoelel.s . . 3 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
64, 5ex-sategoelel 34412 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
74sategoelfv 34411 . 2 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆𝐸) → (𝑆𝐴) ∈ (𝑆𝐵))
81, 3, 6, 7syl3anc 1372 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  c0 4323  ifcif 4529  𝒫 cpw 4603  cmpt 5232  cfv 6544  (class class class)co 7409  ωcom 7855  WUnicwun 10695  𝑔cgoe 34324   Sat csate 34329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-ac 10111  df-wun 10697  df-goel 34331  df-gona 34332  df-goal 34333  df-sat 34334  df-sate 34335  df-fmla 34336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator