MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash2 Structured version   Visualization version   GIF version

Theorem odhash2 19095
Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))

Proof of Theorem odhash2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odhash.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2738 . . . 4 (.g𝐺) = (.g𝐺)
3 odhash.o . . . 4 𝑂 = (od‘𝐺)
4 odhash.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
51, 2, 3, 4odf1o2 19093 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
6 ovex 7288 . . . 4 (0..^(𝑂𝐴)) ∈ V
76f1oen 8716 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (0..^(𝑂𝐴)) ≈ (𝐾‘{𝐴}))
8 hasheni 13990 . . 3 ((0..^(𝑂𝐴)) ≈ (𝐾‘{𝐴}) → (♯‘(0..^(𝑂𝐴))) = (♯‘(𝐾‘{𝐴})))
95, 7, 83syl 18 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(0..^(𝑂𝐴))) = (♯‘(𝐾‘{𝐴})))
101, 3odcl 19059 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
12 hashfzo0 14073 . . 3 ((𝑂𝐴) ∈ ℕ0 → (♯‘(0..^(𝑂𝐴))) = (𝑂𝐴))
1311, 12syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(0..^(𝑂𝐴))) = (𝑂𝐴))
149, 13eqtr3d 2780 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cen 8688  0cc0 10802  cn 11903  0cn0 12163  ..^cfzo 13311  chash 13972  Basecbs 16840  mrClscmrc 17209  Grpcgrp 18492  .gcmg 18615  SubGrpcsubg 18664  odcod 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-od 19051
This theorem is referenced by:  odhash3  19096  proot1mul  40940
  Copyright terms: Public domain W3C validator