MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash2 Structured version   Visualization version   GIF version

Theorem odhash2 19617
Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))

Proof of Theorem odhash2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odhash.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2740 . . . 4 (.g𝐺) = (.g𝐺)
3 odhash.o . . . 4 𝑂 = (od‘𝐺)
4 odhash.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
51, 2, 3, 4odf1o2 19615 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
6 ovex 7481 . . . 4 (0..^(𝑂𝐴)) ∈ V
76f1oen 9033 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (0..^(𝑂𝐴)) ≈ (𝐾‘{𝐴}))
8 hasheni 14397 . . 3 ((0..^(𝑂𝐴)) ≈ (𝐾‘{𝐴}) → (♯‘(0..^(𝑂𝐴))) = (♯‘(𝐾‘{𝐴})))
95, 7, 83syl 18 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(0..^(𝑂𝐴))) = (♯‘(𝐾‘{𝐴})))
101, 3odcl 19578 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
12 hashfzo0 14479 . . 3 ((𝑂𝐴) ∈ ℕ0 → (♯‘(0..^(𝑂𝐴))) = (𝑂𝐴))
1311, 12syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(0..^(𝑂𝐴))) = (𝑂𝐴))
149, 13eqtr3d 2782 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  {csn 4648   class class class wbr 5166  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cen 9000  0cc0 11184  cn 12293  0cn0 12553  ..^cfzo 13711  chash 14379  Basecbs 17258  mrClscmrc 17641  Grpcgrp 18973  .gcmg 19107  SubGrpcsubg 19160  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-od 19570
This theorem is referenced by:  odhash3  19618  proot1mul  43155
  Copyright terms: Public domain W3C validator