MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgcdeq Structured version   Visualization version   GIF version

Theorem hashgcdeq 16418
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁

Proof of Theorem hashgcdeq
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . 2 ((ϕ‘(𝑀 / 𝑁)) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)) ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
2 eqeq2 2750 . 2 (0 = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0 ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
3 nndivdvds 15900 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
43biimpa 476 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
5 dfphi2 16403 . . . 4 ((𝑀 / 𝑁) ∈ ℕ → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
64, 5syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
7 eqid 2738 . . . . . 6 {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
8 eqid 2738 . . . . . 6 {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}
9 eqid 2738 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)) = (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁))
107, 8, 9hashgcdlem 16417 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
11103expa 1116 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
12 ovex 7288 . . . . . 6 (0..^(𝑀 / 𝑁)) ∈ V
1312rabex 5251 . . . . 5 {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ∈ V
1413f1oen 8716 . . . 4 ((𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} → {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ≈ {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
15 hasheni 13990 . . . 4 ({𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ≈ {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} → (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}) = (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}))
1611, 14, 153syl 18 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}) = (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}))
176, 16eqtr2d 2779 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)))
18 simprr 769 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) = 𝑁)
19 elfzoelz 13316 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^𝑀) → 𝑥 ∈ ℤ)
2019ad2antrl 724 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑥 ∈ ℤ)
21 nnz 12272 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
2221ad2antrr 722 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
23 gcddvds 16138 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
2420, 22, 23syl2anc 583 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
2524simprd 495 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) ∥ 𝑀)
2618, 25eqbrtrrd 5094 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
2726expr 456 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → ((𝑥 gcd 𝑀) = 𝑁𝑁𝑀))
2827con3d 152 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → (¬ 𝑁𝑀 → ¬ (𝑥 gcd 𝑀) = 𝑁))
2928impancom 451 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (𝑥 ∈ (0..^𝑀) → ¬ (𝑥 gcd 𝑀) = 𝑁))
3029ralrimiv 3106 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
31 rabeq0 4315 . . . . 5 ({𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅ ↔ ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
3230, 31sylibr 233 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅)
3332fveq2d 6760 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (♯‘∅))
34 hash0 14010 . . 3 (♯‘∅) = 0
3533, 34eqtrdi 2795 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0)
361, 2, 17, 35ifbothda 4494 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  c0 4253  ifcif 4456   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cen 8688  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  cn 11903  cz 12249  ..^cfzo 13311  chash 13972  cdvds 15891   gcd cgcd 16129  ϕcphi 16393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-phi 16395
This theorem is referenced by:  phisum  16419
  Copyright terms: Public domain W3C validator