Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2 | Structured version Visualization version GIF version |
Description: The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
Ref | Expression |
---|---|
numclwwlk1lem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | extwwlkfab.c | . . 3 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
3 | extwwlkfab.f | . . 3 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
4 | oveq1 7344 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 prefix (𝑁 − 2)) = (𝑢 prefix (𝑁 − 2))) | |
5 | fveq1 6824 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) | |
6 | 4, 5 | opeq12d 4825 | . . . 4 ⊢ (𝑥 = 𝑢 → 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉 = 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
7 | 6 | cbvmptv 5205 | . . 3 ⊢ (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
8 | 1, 2, 3, 7 | numclwwlk1lem2f1o 29011 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
9 | ovex 7370 | . . 3 ⊢ (𝑋𝐶𝑁) ∈ V | |
10 | 9 | f1oen 8834 | . 2 ⊢ ((𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
11 | 8, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3403 〈cop 4579 class class class wbr 5092 ↦ cmpt 5175 × cxp 5618 –1-1-onto→wf1o 6478 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ≈ cen 8801 1c1 10973 − cmin 11306 2c2 12129 3c3 12130 ℤ≥cuz 12683 prefix cpfx 14481 Vtxcvtx 27655 USGraphcusgr 27808 NeighbVtx cnbgr 27988 ClWWalksNOncclwwlknon 28739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-lsw 14366 df-concat 14374 df-s1 14400 df-substr 14452 df-pfx 14482 df-s2 14660 df-edg 27707 df-upgr 27741 df-umgr 27742 df-usgr 27810 df-nbgr 27989 df-wwlks 28483 df-wwlksn 28484 df-clwwlk 28634 df-clwwlkn 28677 df-clwwlknon 28740 |
This theorem is referenced by: numclwwlk1 29013 |
Copyright terms: Public domain | W3C validator |