| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2 | Structured version Visualization version GIF version | ||
| Description: The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| Ref | Expression |
|---|---|
| numclwwlk1lem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extwwlkfab.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | extwwlkfab.c | . . 3 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 3 | extwwlkfab.f | . . 3 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 4 | oveq1 7361 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 prefix (𝑁 − 2)) = (𝑢 prefix (𝑁 − 2))) | |
| 5 | fveq1 6829 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) | |
| 6 | 4, 5 | opeq12d 4834 | . . . 4 ⊢ (𝑥 = 𝑢 → 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉 = 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| 7 | 6 | cbvmptv 5199 | . . 3 ⊢ (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| 8 | 1, 2, 3, 7 | numclwwlk1lem2f1o 30343 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 9 | ovex 7387 | . . 3 ⊢ (𝑋𝐶𝑁) ∈ V | |
| 10 | 9 | f1oen 8903 | . 2 ⊢ ((𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 11 | 8, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 〈cop 4583 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ≈ cen 8874 1c1 11016 − cmin 11353 2c2 12189 3c3 12190 ℤ≥cuz 12740 prefix cpfx 14582 Vtxcvtx 28978 USGraphcusgr 29131 NeighbVtx cnbgr 29314 ClWWalksNOncclwwlknon 30071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-lsw 14474 df-concat 14482 df-s1 14508 df-substr 14553 df-pfx 14583 df-s2 14759 df-edg 29030 df-upgr 29064 df-umgr 29065 df-usgr 29133 df-nbgr 29315 df-wwlks 29812 df-wwlksn 29813 df-clwwlk 29966 df-clwwlkn 30009 df-clwwlknon 30072 |
| This theorem is referenced by: numclwwlk1 30345 |
| Copyright terms: Public domain | W3C validator |