MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2 30338
Description: The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1lem2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 oveq1 7353 . . . . 5 (𝑥 = 𝑢 → (𝑥 prefix (𝑁 − 2)) = (𝑢 prefix (𝑁 − 2)))
5 fveq1 6821 . . . . 5 (𝑥 = 𝑢 → (𝑥‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1)))
64, 5opeq12d 4833 . . . 4 (𝑥 = 𝑢 → ⟨(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))⟩ = ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
76cbvmptv 5195 . . 3 (𝑥 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))⟩) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
81, 2, 3, 7numclwwlk1lem2f1o 30337 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑥 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
9 ovex 7379 . . 3 (𝑋𝐶𝑁) ∈ V
109f1oen 8895 . 2 ((𝑥 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
118, 10syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cop 4582   class class class wbr 5091  cmpt 5172   × cxp 5614  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  cen 8866  1c1 11007  cmin 11344  2c2 12180  3c3 12181  cuz 12732   prefix cpfx 14578  Vtxcvtx 28975  USGraphcusgr 29128   NeighbVtx cnbgr 29311  ClWWalksNOncclwwlknon 30065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-s2 14755  df-edg 29027  df-upgr 29061  df-umgr 29062  df-usgr 29130  df-nbgr 29312  df-wwlks 29809  df-wwlksn 29810  df-clwwlk 29960  df-clwwlkn 30003  df-clwwlknon 30066
This theorem is referenced by:  numclwwlk1  30339
  Copyright terms: Public domain W3C validator