| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2 | Structured version Visualization version GIF version | ||
| Description: The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| Ref | Expression |
|---|---|
| numclwwlk1lem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extwwlkfab.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | extwwlkfab.c | . . 3 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 3 | extwwlkfab.f | . . 3 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 4 | oveq1 7353 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 prefix (𝑁 − 2)) = (𝑢 prefix (𝑁 − 2))) | |
| 5 | fveq1 6821 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) | |
| 6 | 4, 5 | opeq12d 4833 | . . . 4 ⊢ (𝑥 = 𝑢 → 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉 = 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| 7 | 6 | cbvmptv 5195 | . . 3 ⊢ (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| 8 | 1, 2, 3, 7 | numclwwlk1lem2f1o 30337 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 9 | ovex 7379 | . . 3 ⊢ (𝑋𝐶𝑁) ∈ V | |
| 10 | 9 | f1oen 8895 | . 2 ⊢ ((𝑥 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑥 prefix (𝑁 − 2)), (𝑥‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 11 | 8, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ≈ cen 8866 1c1 11007 − cmin 11344 2c2 12180 3c3 12181 ℤ≥cuz 12732 prefix cpfx 14578 Vtxcvtx 28975 USGraphcusgr 29128 NeighbVtx cnbgr 29311 ClWWalksNOncclwwlknon 30065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-s2 14755 df-edg 29027 df-upgr 29061 df-umgr 29062 df-usgr 29130 df-nbgr 29312 df-wwlks 29809 df-wwlksn 29810 df-clwwlk 29960 df-clwwlkn 30003 df-clwwlknon 30066 |
| This theorem is referenced by: numclwwlk1 30339 |
| Copyright terms: Public domain | W3C validator |