MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2 29602
Description: The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
Assertion
Ref Expression
numclwwlk1lem2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2
Dummy variables 𝑒 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 extwwlkfab.c . . 3 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
4 oveq1 7412 . . . . 5 (π‘₯ = 𝑒 β†’ (π‘₯ prefix (𝑁 βˆ’ 2)) = (𝑒 prefix (𝑁 βˆ’ 2)))
5 fveq1 6887 . . . . 5 (π‘₯ = 𝑒 β†’ (π‘₯β€˜(𝑁 βˆ’ 1)) = (π‘’β€˜(𝑁 βˆ’ 1)))
64, 5opeq12d 4880 . . . 4 (π‘₯ = 𝑒 β†’ ⟨(π‘₯ prefix (𝑁 βˆ’ 2)), (π‘₯β€˜(𝑁 βˆ’ 1))⟩ = ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
76cbvmptv 5260 . . 3 (π‘₯ ∈ (𝑋𝐢𝑁) ↦ ⟨(π‘₯ prefix (𝑁 βˆ’ 2)), (π‘₯β€˜(𝑁 βˆ’ 1))⟩) = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
81, 2, 3, 7numclwwlk1lem2f1o 29601 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘₯ ∈ (𝑋𝐢𝑁) ↦ ⟨(π‘₯ prefix (𝑁 βˆ’ 2)), (π‘₯β€˜(𝑁 βˆ’ 1))⟩):(𝑋𝐢𝑁)–1-1-ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
9 ovex 7438 . . 3 (𝑋𝐢𝑁) ∈ V
109f1oen 8965 . 2 ((π‘₯ ∈ (𝑋𝐢𝑁) ↦ ⟨(π‘₯ prefix (𝑁 βˆ’ 2)), (π‘₯β€˜(𝑁 βˆ’ 1))⟩):(𝑋𝐢𝑁)–1-1-ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)) β†’ (𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
118, 10syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋𝐢𝑁) β‰ˆ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   β‰ˆ cen 8932  1c1 11107   βˆ’ cmin 11440  2c2 12263  3c3 12264  β„€β‰₯cuz 12818   prefix cpfx 14616  Vtxcvtx 28245  USGraphcusgr 28398   NeighbVtx cnbgr 28578  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-s2 14795  df-edg 28297  df-upgr 28331  df-umgr 28332  df-usgr 28400  df-nbgr 28579  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  numclwwlk1  29603
  Copyright terms: Public domain W3C validator