![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlknwwlksnen | Structured version Visualization version GIF version |
Description: In a simple pseudograph, the set of walks of a fixed length and the set of walks represented by words are equinumerous. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.) |
Ref | Expression |
---|---|
wlknwwlksnen | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} | |
2 | eqid 2737 | . . 3 ⊢ (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺) | |
3 | eqid 2737 | . . 3 ⊢ (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)) = (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)) | |
4 | 1, 2, 3 | wlknwwlksnbij 29934 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁}–1-1-onto→(𝑁 WWalksN 𝐺)) |
5 | fvex 6927 | . . . 4 ⊢ (Walks‘𝐺) ∈ V | |
6 | 5 | rabex 5348 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ∈ V |
7 | 6 | f1oen 9021 | . 2 ⊢ ((𝑤 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ↦ (2nd ‘𝑤)):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁}–1-1-onto→(𝑁 WWalksN 𝐺) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑝)) = 𝑁} ≈ (𝑁 WWalksN 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3436 class class class wbr 5151 ↦ cmpt 5234 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 ≈ cen 8990 ℕ0cn0 12533 ♯chash 14375 USPGraphcuspgr 29191 Walkscwlks 29640 WWalksN cwwlksn 29872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-edg 29091 df-uhgr 29101 df-upgr 29125 df-uspgr 29193 df-wlks 29643 df-wwlks 29876 df-wwlksn 29877 |
This theorem is referenced by: wlknwwlksneqs 29936 wlksnfi 29953 |
Copyright terms: Public domain | W3C validator |