| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashun | Structured version Visualization version GIF version | ||
| Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashun | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardun 10102 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) | |
| 2 | 1 | fveq2d 6835 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴 ∪ 𝐵))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵)))) |
| 3 | unfi 9090 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | eqid 2733 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 5 | 4 | hashgval 14250 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴 ∪ 𝐵))) = (♯‘(𝐴 ∪ 𝐵))) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴 ∪ 𝐵))) = (♯‘(𝐴 ∪ 𝐵))) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴 ∪ 𝐵))) = (♯‘(𝐴 ∪ 𝐵))) |
| 8 | ficardom 9864 | . . . . 5 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
| 9 | ficardom 9864 | . . . . 5 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
| 10 | 4 | hashgadd 14294 | . . . . 5 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))) |
| 11 | 8, 9, 10 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))) |
| 12 | 4 | hashgval 14250 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴)) |
| 13 | 4 | hashgval 14250 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵)) |
| 14 | 12, 13 | oveqan12d 7374 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵))) |
| 15 | 11, 14 | eqtrd 2768 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵))) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵))) |
| 17 | 2, 7, 16 | 3eqtr3d 2776 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∪ cun 3897 ∩ cin 3898 ∅c0 4284 ↦ cmpt 5176 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 ωcom 7805 reccrdg 8337 +o coa 8391 Fincfn 8878 cardccrd 9838 0cc0 11016 1c1 11017 + caddc 11019 ♯chash 14247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-hash 14248 |
| This theorem is referenced by: hashun2 14300 hashun3 14301 hashunx 14303 hashunsng 14309 hashssdif 14329 hashxplem 14350 hashfun 14354 hashbclem 14369 hashf1lem2 14373 hash7g 14403 hash3tpexb 14411 climcndslem1 15766 climcndslem2 15767 phiprmpw 16697 prmreclem5 16842 4sqlem11 16877 ppidif 27110 mumul 27128 ppiub 27152 lgsquadlem2 27329 lgsquadlem3 27330 numedglnl 29133 cusgrsizeinds 29442 eupth2eucrct 30208 numclwwlk3lem2 30375 ex-hash 30444 ballotlemgun 34549 ballotth 34562 subfacp1lem1 35234 subfacp1lem6 35240 poimirlem27 37697 sticksstones22 42271 eldioph2lem1 42867 |
| Copyright terms: Public domain | W3C validator |