![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashun | Structured version Visualization version GIF version |
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashun | β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (β―β(π΄ βͺ π΅)) = ((β―βπ΄) + (β―βπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardun 10191 | . . 3 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (cardβ(π΄ βͺ π΅)) = ((cardβπ΄) +o (cardβπ΅))) | |
2 | 1 | fveq2d 6892 | . 2 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβ(π΄ βͺ π΅))) = ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β((cardβπ΄) +o (cardβπ΅)))) |
3 | unfi 9168 | . . . 4 β’ ((π΄ β Fin β§ π΅ β Fin) β (π΄ βͺ π΅) β Fin) | |
4 | eqid 2732 | . . . . 5 β’ (rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο) = (rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο) | |
5 | 4 | hashgval 14289 | . . . 4 β’ ((π΄ βͺ π΅) β Fin β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβ(π΄ βͺ π΅))) = (β―β(π΄ βͺ π΅))) |
6 | 3, 5 | syl 17 | . . 3 β’ ((π΄ β Fin β§ π΅ β Fin) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβ(π΄ βͺ π΅))) = (β―β(π΄ βͺ π΅))) |
7 | 6 | 3adant3 1132 | . 2 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβ(π΄ βͺ π΅))) = (β―β(π΄ βͺ π΅))) |
8 | ficardom 9952 | . . . . 5 β’ (π΄ β Fin β (cardβπ΄) β Ο) | |
9 | ficardom 9952 | . . . . 5 β’ (π΅ β Fin β (cardβπ΅) β Ο) | |
10 | 4 | hashgadd 14333 | . . . . 5 β’ (((cardβπ΄) β Ο β§ (cardβπ΅) β Ο) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β((cardβπ΄) +o (cardβπ΅))) = (((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΄)) + ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΅)))) |
11 | 8, 9, 10 | syl2an 596 | . . . 4 β’ ((π΄ β Fin β§ π΅ β Fin) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β((cardβπ΄) +o (cardβπ΅))) = (((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΄)) + ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΅)))) |
12 | 4 | hashgval 14289 | . . . . 5 β’ (π΄ β Fin β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΄)) = (β―βπ΄)) |
13 | 4 | hashgval 14289 | . . . . 5 β’ (π΅ β Fin β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΅)) = (β―βπ΅)) |
14 | 12, 13 | oveqan12d 7424 | . . . 4 β’ ((π΄ β Fin β§ π΅ β Fin) β (((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΄)) + ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β(cardβπ΅))) = ((β―βπ΄) + (β―βπ΅))) |
15 | 11, 14 | eqtrd 2772 | . . 3 β’ ((π΄ β Fin β§ π΅ β Fin) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β((cardβπ΄) +o (cardβπ΅))) = ((β―βπ΄) + (β―βπ΅))) |
16 | 15 | 3adant3 1132 | . 2 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β ((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο)β((cardβπ΄) +o (cardβπ΅))) = ((β―βπ΄) + (β―βπ΅))) |
17 | 2, 7, 16 | 3eqtr3d 2780 | 1 β’ ((π΄ β Fin β§ π΅ β Fin β§ (π΄ β© π΅) = β ) β (β―β(π΄ βͺ π΅)) = ((β―βπ΄) + (β―βπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3945 β© cin 3946 β c0 4321 β¦ cmpt 5230 βΎ cres 5677 βcfv 6540 (class class class)co 7405 Οcom 7851 reccrdg 8405 +o coa 8459 Fincfn 8935 cardccrd 9926 0cc0 11106 1c1 11107 + caddc 11109 β―chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-hash 14287 |
This theorem is referenced by: hashun2 14339 hashun3 14340 hashunx 14342 hashunsng 14348 hashssdif 14368 hashxplem 14389 hashfun 14393 hashbclem 14407 hashf1lem2 14413 climcndslem1 15791 climcndslem2 15792 phiprmpw 16705 prmreclem5 16849 4sqlem11 16884 ppidif 26656 mumul 26674 ppiub 26696 lgsquadlem2 26873 lgsquadlem3 26874 numedglnl 28393 cusgrsizeinds 28698 eupth2eucrct 29459 numclwwlk3lem2 29626 ex-hash 29695 ballotlemgun 33511 ballotth 33524 subfacp1lem1 34158 subfacp1lem6 34164 poimirlem27 36503 sticksstones22 40972 eldioph2lem1 41483 |
Copyright terms: Public domain | W3C validator |