MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun Structured version   Visualization version   GIF version

Theorem hashun 14025
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ficardun 9887 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))
21fveq2d 6760 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))))
3 unfi 8917 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
4 eqid 2738 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 13975 . . . 4 ((𝐴𝐵) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (♯‘(𝐴𝐵)))
63, 5syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (♯‘(𝐴𝐵)))
763adant3 1130 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (♯‘(𝐴𝐵)))
8 ficardom 9650 . . . . 5 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
9 ficardom 9650 . . . . 5 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
104hashgadd 14020 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
118, 9, 10syl2an 595 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
124hashgval 13975 . . . . 5 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
134hashgval 13975 . . . . 5 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
1412, 13oveqan12d 7274 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵)))
1511, 14eqtrd 2778 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵)))
16153adant3 1130 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝐵))) = ((♯‘𝐴) + (♯‘𝐵)))
172, 7, 163eqtr3d 2786 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211   +o coa 8264  Fincfn 8691  cardccrd 9624  0cc0 10802  1c1 10803   + caddc 10805  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  hashun2  14026  hashun3  14027  hashunx  14029  hashunsng  14035  hashssdif  14055  hashxplem  14076  hashfun  14080  hashbclem  14092  hashf1lem2  14098  climcndslem1  15489  climcndslem2  15490  phiprmpw  16405  prmreclem5  16549  4sqlem11  16584  ppidif  26217  mumul  26235  ppiub  26257  lgsquadlem2  26434  lgsquadlem3  26435  numedglnl  27417  cusgrsizeinds  27722  eupth2eucrct  28482  numclwwlk3lem2  28649  ex-hash  28718  ballotlemgun  32391  ballotth  32404  subfacp1lem1  33041  subfacp1lem6  33047  poimirlem27  35731  sticksstones22  40052  eldioph2lem1  40498
  Copyright terms: Public domain W3C validator