| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ram2 | Structured version Visualization version GIF version | ||
| Description: The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0ram2 | ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6665 | . . . . 5 ⊢ (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0) | |
| 2 | 1 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0) |
| 3 | nn0ssz 12500 | . . . 4 ⊢ ℕ0 ⊆ ℤ | |
| 4 | 2, 3 | sstrdi 3943 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ) |
| 5 | nn0ssre 12394 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 6 | 2, 5 | sstrdi 3943 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ) |
| 7 | simp1 1136 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin) | |
| 8 | ffn 6658 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) | |
| 9 | 8 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 Fn 𝑅) |
| 10 | dffn4 6748 | . . . . . 6 ⊢ (𝐹 Fn 𝑅 ↔ 𝐹:𝑅–onto→ran 𝐹) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅–onto→ran 𝐹) |
| 12 | fofi 9206 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
| 13 | 7, 11, 12 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin) |
| 14 | fdm 6667 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) | |
| 15 | 14 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅) |
| 16 | simp2 1137 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅) | |
| 17 | 15, 16 | eqnetrd 2996 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅) |
| 18 | dm0rn0 5870 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 19 | 18 | necon3bii 2981 | . . . . 5 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
| 20 | 17, 19 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅) |
| 21 | fimaxre 12075 | . . . 4 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | |
| 22 | 6, 13, 20, 21 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 23 | ssrexv 4000 | . . 3 ⊢ (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | |
| 24 | 4, 22, 23 | sylc 65 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 25 | 0ram 16936 | . 2 ⊢ (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | |
| 26 | 24, 25 | mpdan 687 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 dom cdm 5621 ran crn 5622 Fn wfn 6483 ⟶wf 6484 –onto→wfo 6486 (class class class)co 7354 Fincfn 8877 supcsup 9333 ℝcr 11014 0cc0 11015 < clt 11155 ≤ cle 11156 ℕ0cn0 12390 ℤcz 12477 Ramsey cram 16915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-hash 14242 df-ram 16917 |
| This theorem is referenced by: 0ramcl 16939 |
| Copyright terms: Public domain | W3C validator |