![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ram2 | Structured version Visualization version GIF version |
Description: The Ramsey number when π = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
0ram2 | β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β (0 Ramsey πΉ) = sup(ran πΉ, β, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6725 | . . . . 5 β’ (πΉ:π βΆβ0 β ran πΉ β β0) | |
2 | 1 | 3ad2ant3 1133 | . . . 4 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β ran πΉ β β0) |
3 | nn0ssz 12587 | . . . 4 β’ β0 β β€ | |
4 | 2, 3 | sstrdi 3995 | . . 3 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β ran πΉ β β€) |
5 | nn0ssre 12482 | . . . . 5 β’ β0 β β | |
6 | 2, 5 | sstrdi 3995 | . . . 4 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β ran πΉ β β) |
7 | simp1 1134 | . . . . 5 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β π β Fin) | |
8 | ffn 6718 | . . . . . . 7 β’ (πΉ:π βΆβ0 β πΉ Fn π ) | |
9 | 8 | 3ad2ant3 1133 | . . . . . 6 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β πΉ Fn π ) |
10 | dffn4 6812 | . . . . . 6 β’ (πΉ Fn π β πΉ:π βontoβran πΉ) | |
11 | 9, 10 | sylib 217 | . . . . 5 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β πΉ:π βontoβran πΉ) |
12 | fofi 9342 | . . . . 5 β’ ((π β Fin β§ πΉ:π βontoβran πΉ) β ran πΉ β Fin) | |
13 | 7, 11, 12 | syl2anc 582 | . . . 4 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β ran πΉ β Fin) |
14 | fdm 6727 | . . . . . . 7 β’ (πΉ:π βΆβ0 β dom πΉ = π ) | |
15 | 14 | 3ad2ant3 1133 | . . . . . 6 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β dom πΉ = π ) |
16 | simp2 1135 | . . . . . 6 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β π β β ) | |
17 | 15, 16 | eqnetrd 3006 | . . . . 5 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β dom πΉ β β ) |
18 | dm0rn0 5925 | . . . . . 6 β’ (dom πΉ = β β ran πΉ = β ) | |
19 | 18 | necon3bii 2991 | . . . . 5 β’ (dom πΉ β β β ran πΉ β β ) |
20 | 17, 19 | sylib 217 | . . . 4 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β ran πΉ β β ) |
21 | fimaxre 12164 | . . . 4 β’ ((ran πΉ β β β§ ran πΉ β Fin β§ ran πΉ β β ) β βπ₯ β ran πΉβπ¦ β ran πΉ π¦ β€ π₯) | |
22 | 6, 13, 20, 21 | syl3anc 1369 | . . 3 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β βπ₯ β ran πΉβπ¦ β ran πΉ π¦ β€ π₯) |
23 | ssrexv 4052 | . . 3 β’ (ran πΉ β β€ β (βπ₯ β ran πΉβπ¦ β ran πΉ π¦ β€ π₯ β βπ₯ β β€ βπ¦ β ran πΉ π¦ β€ π₯)) | |
24 | 4, 22, 23 | sylc 65 | . 2 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β βπ₯ β β€ βπ¦ β ran πΉ π¦ β€ π₯) |
25 | 0ram 16959 | . 2 β’ (((π β Fin β§ π β β β§ πΉ:π βΆβ0) β§ βπ₯ β β€ βπ¦ β ran πΉ π¦ β€ π₯) β (0 Ramsey πΉ) = sup(ran πΉ, β, < )) | |
26 | 24, 25 | mpdan 683 | 1 β’ ((π β Fin β§ π β β β§ πΉ:π βΆβ0) β (0 Ramsey πΉ) = sup(ran πΉ, β, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 βwral 3059 βwrex 3068 β wss 3949 β c0 4323 class class class wbr 5149 dom cdm 5677 ran crn 5678 Fn wfn 6539 βΆwf 6540 βontoβwfo 6542 (class class class)co 7413 Fincfn 8943 supcsup 9439 βcr 11113 0cc0 11114 < clt 11254 β€ cle 11255 β0cn0 12478 β€cz 12564 Ramsey cram 16938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-fz 13491 df-hash 14297 df-ram 16940 |
This theorem is referenced by: 0ramcl 16962 |
Copyright terms: Public domain | W3C validator |