| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ram2 | Structured version Visualization version GIF version | ||
| Description: The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0ram2 | ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6743 | . . . . 5 ⊢ (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0) | |
| 2 | 1 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0) |
| 3 | nn0ssz 12636 | . . . 4 ⊢ ℕ0 ⊆ ℤ | |
| 4 | 2, 3 | sstrdi 3996 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ) |
| 5 | nn0ssre 12530 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 6 | 2, 5 | sstrdi 3996 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ) |
| 7 | simp1 1137 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin) | |
| 8 | ffn 6736 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) | |
| 9 | 8 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 Fn 𝑅) |
| 10 | dffn4 6826 | . . . . . 6 ⊢ (𝐹 Fn 𝑅 ↔ 𝐹:𝑅–onto→ran 𝐹) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅–onto→ran 𝐹) |
| 12 | fofi 9351 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
| 13 | 7, 11, 12 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin) |
| 14 | fdm 6745 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) | |
| 15 | 14 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅) |
| 16 | simp2 1138 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅) | |
| 17 | 15, 16 | eqnetrd 3008 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅) |
| 18 | dm0rn0 5935 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 19 | 18 | necon3bii 2993 | . . . . 5 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
| 20 | 17, 19 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅) |
| 21 | fimaxre 12212 | . . . 4 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | |
| 22 | 6, 13, 20, 21 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 23 | ssrexv 4053 | . . 3 ⊢ (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | |
| 24 | 4, 22, 23 | sylc 65 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 25 | 0ram 17058 | . 2 ⊢ (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | |
| 26 | 24, 25 | mpdan 687 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 dom cdm 5685 ran crn 5686 Fn wfn 6556 ⟶wf 6557 –onto→wfo 6559 (class class class)co 7431 Fincfn 8985 supcsup 9480 ℝcr 11154 0cc0 11155 < clt 11295 ≤ cle 11296 ℕ0cn0 12526 ℤcz 12613 Ramsey cram 17037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-ram 17039 |
| This theorem is referenced by: 0ramcl 17061 |
| Copyright terms: Public domain | W3C validator |