Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ram2 | Structured version Visualization version GIF version |
Description: The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
0ram2 | ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6591 | . . . . 5 ⊢ (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0) | |
2 | 1 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0) |
3 | nn0ssz 12271 | . . . 4 ⊢ ℕ0 ⊆ ℤ | |
4 | 2, 3 | sstrdi 3929 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ) |
5 | nn0ssre 12167 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
6 | 2, 5 | sstrdi 3929 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ) |
7 | simp1 1134 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin) | |
8 | ffn 6584 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) | |
9 | 8 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 Fn 𝑅) |
10 | dffn4 6678 | . . . . . 6 ⊢ (𝐹 Fn 𝑅 ↔ 𝐹:𝑅–onto→ran 𝐹) | |
11 | 9, 10 | sylib 217 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅–onto→ran 𝐹) |
12 | fofi 9035 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
13 | 7, 11, 12 | syl2anc 583 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin) |
14 | fdm 6593 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) | |
15 | 14 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅) |
16 | simp2 1135 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅) | |
17 | 15, 16 | eqnetrd 3010 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅) |
18 | dm0rn0 5823 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
19 | 18 | necon3bii 2995 | . . . . 5 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
20 | 17, 19 | sylib 217 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅) |
21 | fimaxre 11849 | . . . 4 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | |
22 | 6, 13, 20, 21 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
23 | ssrexv 3984 | . . 3 ⊢ (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | |
24 | 4, 22, 23 | sylc 65 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
25 | 0ram 16649 | . 2 ⊢ (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | |
26 | 24, 25 | mpdan 683 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 dom cdm 5580 ran crn 5581 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 (class class class)co 7255 Fincfn 8691 supcsup 9129 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 ℕ0cn0 12163 ℤcz 12249 Ramsey cram 16628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-ram 16630 |
This theorem is referenced by: 0ramcl 16652 |
Copyright terms: Public domain | W3C validator |