![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34588. Since 1st β(πβπ) is a neighborhood of (πΊ β π), every element π΄ β π satisfies (πΊβπ΄) β (1st β(πβπ)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem1.m | β’ ((π β§ π) β π β (1...π)) |
cvmliftlem3.3 | β’ π = (((π β 1) / π)[,](π / π)) |
cvmliftlem3.m | β’ ((π β§ π) β π΄ β π) |
Ref | Expression |
---|---|
cvmliftlem3 | β’ ((π β§ π) β (πΊβπ΄) β (1st β(πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem1.m | . . 3 β’ ((π β§ π) β π β (1...π)) | |
2 | cvmliftlem.a | . . . 4 β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) | |
3 | 2 | adantr 479 | . . 3 β’ ((π β§ π) β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
4 | oveq1 7418 | . . . . . . . . 9 β’ (π = π β (π β 1) = (π β 1)) | |
5 | 4 | oveq1d 7426 | . . . . . . . 8 β’ (π = π β ((π β 1) / π) = ((π β 1) / π)) |
6 | oveq1 7418 | . . . . . . . 8 β’ (π = π β (π / π) = (π / π)) | |
7 | 5, 6 | oveq12d 7429 | . . . . . . 7 β’ (π = π β (((π β 1) / π)[,](π / π)) = (((π β 1) / π)[,](π / π))) |
8 | cvmliftlem3.3 | . . . . . . 7 β’ π = (((π β 1) / π)[,](π / π)) | |
9 | 7, 8 | eqtr4di 2788 | . . . . . 6 β’ (π = π β (((π β 1) / π)[,](π / π)) = π) |
10 | 9 | imaeq2d 6058 | . . . . 5 β’ (π = π β (πΊ β (((π β 1) / π)[,](π / π))) = (πΊ β π)) |
11 | 2fveq3 6895 | . . . . 5 β’ (π = π β (1st β(πβπ)) = (1st β(πβπ))) | |
12 | 10, 11 | sseq12d 4014 | . . . 4 β’ (π = π β ((πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ)) β (πΊ β π) β (1st β(πβπ)))) |
13 | 12 | rspcv 3607 | . . 3 β’ (π β (1...π) β (βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ)) β (πΊ β π) β (1st β(πβπ)))) |
14 | 1, 3, 13 | sylc 65 | . 2 β’ ((π β§ π) β (πΊ β π) β (1st β(πβπ))) |
15 | cvmliftlem3.m | . . 3 β’ ((π β§ π) β π΄ β π) | |
16 | cvmliftlem.g | . . . . . . 7 β’ (π β πΊ β (II Cn π½)) | |
17 | iiuni 24621 | . . . . . . . 8 β’ (0[,]1) = βͺ II | |
18 | cvmliftlem.x | . . . . . . . 8 β’ π = βͺ π½ | |
19 | 17, 18 | cnf 22970 | . . . . . . 7 β’ (πΊ β (II Cn π½) β πΊ:(0[,]1)βΆπ) |
20 | 16, 19 | syl 17 | . . . . . 6 β’ (π β πΊ:(0[,]1)βΆπ) |
21 | 20 | adantr 479 | . . . . 5 β’ ((π β§ π) β πΊ:(0[,]1)βΆπ) |
22 | 21 | ffund 6720 | . . . 4 β’ ((π β§ π) β Fun πΊ) |
23 | cvmliftlem.1 | . . . . . 6 β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) | |
24 | cvmliftlem.b | . . . . . 6 β’ π΅ = βͺ πΆ | |
25 | cvmliftlem.f | . . . . . 6 β’ (π β πΉ β (πΆ CovMap π½)) | |
26 | cvmliftlem.p | . . . . . 6 β’ (π β π β π΅) | |
27 | cvmliftlem.e | . . . . . 6 β’ (π β (πΉβπ) = (πΊβ0)) | |
28 | cvmliftlem.n | . . . . . 6 β’ (π β π β β) | |
29 | cvmliftlem.t | . . . . . 6 β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) | |
30 | cvmliftlem.l | . . . . . 6 β’ πΏ = (topGenβran (,)) | |
31 | 23, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8 | cvmliftlem2 34575 | . . . . 5 β’ ((π β§ π) β π β (0[,]1)) |
32 | 21 | fdmd 6727 | . . . . 5 β’ ((π β§ π) β dom πΊ = (0[,]1)) |
33 | 31, 32 | sseqtrrd 4022 | . . . 4 β’ ((π β§ π) β π β dom πΊ) |
34 | funfvima2 7234 | . . . 4 β’ ((Fun πΊ β§ π β dom πΊ) β (π΄ β π β (πΊβπ΄) β (πΊ β π))) | |
35 | 22, 33, 34 | syl2anc 582 | . . 3 β’ ((π β§ π) β (π΄ β π β (πΊβπ΄) β (πΊ β π))) |
36 | 15, 35 | mpd 15 | . 2 β’ ((π β§ π) β (πΊβπ΄) β (πΊ β π)) |
37 | 14, 36 | sseldd 3982 | 1 β’ ((π β§ π) β (πΊβπ΄) β (1st β(πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β cdif 3944 β© cin 3946 β wss 3947 β c0 4321 π« cpw 4601 {csn 4627 βͺ cuni 4907 βͺ ciun 4996 β¦ cmpt 5230 Γ cxp 5673 β‘ccnv 5674 dom cdm 5675 ran crn 5676 βΎ cres 5677 β cima 5678 Fun wfun 6536 βΆwf 6538 βcfv 6542 (class class class)co 7411 1st c1st 7975 0cc0 11112 1c1 11113 β cmin 11448 / cdiv 11875 βcn 12216 (,)cioo 13328 [,]cicc 13331 ...cfz 13488 βΎt crest 17370 topGenctg 17387 Cn ccn 22948 Homeochmeo 23477 IIcii 24615 CovMap ccvm 34544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-icc 13335 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-top 22616 df-topon 22633 df-bases 22669 df-cn 22951 df-ii 24617 |
This theorem is referenced by: cvmliftlem6 34579 cvmliftlem8 34581 cvmliftlem9 34582 |
Copyright terms: Public domain | W3C validator |