Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem3 Structured version   Visualization version   GIF version

Theorem cvmliftlem3 35309
Description: Lemma for cvmlift 35321. Since 1st ‘(𝑇𝑀) is a neighborhood of (𝐺𝑊), every element 𝐴𝑊 satisfies (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem3.m ((𝜑𝜓) → 𝐴𝑊)
Assertion
Ref Expression
cvmliftlem3 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐴(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem3
StepHypRef Expression
1 cvmliftlem1.m . . 3 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
2 cvmliftlem.a . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
32adantr 480 . . 3 ((𝜑𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
4 oveq1 7412 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1))
54oveq1d 7420 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
6 oveq1 7412 . . . . . . . 8 (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁))
75, 6oveq12d 7423 . . . . . . 7 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
8 cvmliftlem3.3 . . . . . . 7 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
97, 8eqtr4di 2788 . . . . . 6 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊)
109imaeq2d 6047 . . . . 5 (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺𝑊))
11 2fveq3 6881 . . . . 5 (𝑘 = 𝑀 → (1st ‘(𝑇𝑘)) = (1st ‘(𝑇𝑀)))
1210, 11sseq12d 3992 . . . 4 (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) ↔ (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
1312rspcv 3597 . . 3 (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
141, 3, 13sylc 65 . 2 ((𝜑𝜓) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀)))
15 cvmliftlem3.m . . 3 ((𝜑𝜓) → 𝐴𝑊)
16 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
17 iiuni 24825 . . . . . . . 8 (0[,]1) = II
18 cvmliftlem.x . . . . . . . 8 𝑋 = 𝐽
1917, 18cnf 23184 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
2016, 19syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
2120adantr 480 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
2221ffund 6710 . . . 4 ((𝜑𝜓) → Fun 𝐺)
23 cvmliftlem.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
24 cvmliftlem.b . . . . . 6 𝐵 = 𝐶
25 cvmliftlem.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
26 cvmliftlem.p . . . . . 6 (𝜑𝑃𝐵)
27 cvmliftlem.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺‘0))
28 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
29 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
30 cvmliftlem.l . . . . . 6 𝐿 = (topGen‘ran (,))
3123, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8cvmliftlem2 35308 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
3221fdmd 6716 . . . . 5 ((𝜑𝜓) → dom 𝐺 = (0[,]1))
3331, 32sseqtrrd 3996 . . . 4 ((𝜑𝜓) → 𝑊 ⊆ dom 𝐺)
34 funfvima2 7223 . . . 4 ((Fun 𝐺𝑊 ⊆ dom 𝐺) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3522, 33, 34syl2anc 584 . . 3 ((𝜑𝜓) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3615, 35mpd 15 . 2 ((𝜑𝜓) → (𝐺𝐴) ∈ (𝐺𝑊))
3714, 36sseldd 3959 1 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   ciun 4967  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  0cc0 11129  1c1 11130  cmin 11466   / cdiv 11894  cn 12240  (,)cioo 13362  [,]cicc 13365  ...cfz 13524  t crest 17434  topGenctg 17451   Cn ccn 23162  Homeochmeo 23691  IIcii 24819   CovMap ccvm 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-ii 24821
This theorem is referenced by:  cvmliftlem6  35312  cvmliftlem8  35314  cvmliftlem9  35315
  Copyright terms: Public domain W3C validator