![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 35267. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
cvmliftlem3.m | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
cvmliftlem3 | ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem1.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
2 | cvmliftlem.a | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
4 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1)) | |
5 | 4 | oveq1d 7463 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁)) |
6 | oveq1 7455 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁)) | |
7 | 5, 6 | oveq12d 7466 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
8 | cvmliftlem3.3 | . . . . . . 7 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
9 | 7, 8 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊) |
10 | 9 | imaeq2d 6089 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺 “ 𝑊)) |
11 | 2fveq3 6925 | . . . . 5 ⊢ (𝑘 = 𝑀 → (1st ‘(𝑇‘𝑘)) = (1st ‘(𝑇‘𝑀))) | |
12 | 10, 11 | sseq12d 4042 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) ↔ (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
13 | 12 | rspcv 3631 | . . 3 ⊢ (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
14 | 1, 3, 13 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀))) |
15 | cvmliftlem3.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) | |
16 | cvmliftlem.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
17 | iiuni 24926 | . . . . . . . 8 ⊢ (0[,]1) = ∪ II | |
18 | cvmliftlem.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
19 | 17, 18 | cnf 23275 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
22 | 21 | ffund 6751 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → Fun 𝐺) |
23 | cvmliftlem.1 | . . . . . 6 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
24 | cvmliftlem.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐶 | |
25 | cvmliftlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
26 | cvmliftlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
27 | cvmliftlem.e | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
28 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
29 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
30 | cvmliftlem.l | . . . . . 6 ⊢ 𝐿 = (topGen‘ran (,)) | |
31 | 23, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8 | cvmliftlem2 35254 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
32 | 21 | fdmd 6757 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → dom 𝐺 = (0[,]1)) |
33 | 31, 32 | sseqtrrd 4050 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ dom 𝐺) |
34 | funfvima2 7268 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝑊 ⊆ dom 𝐺) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) | |
35 | 22, 33, 34 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) |
36 | 15, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊)) |
37 | 14, 36 | sseldd 4009 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 0cc0 11184 1c1 11185 − cmin 11520 / cdiv 11947 ℕcn 12293 (,)cioo 13407 [,]cicc 13410 ...cfz 13567 ↾t crest 17480 topGenctg 17497 Cn ccn 23253 Homeochmeo 23782 IIcii 24920 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cn 23256 df-ii 24922 |
This theorem is referenced by: cvmliftlem6 35258 cvmliftlem8 35260 cvmliftlem9 35261 |
Copyright terms: Public domain | W3C validator |