Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 33257. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
cvmliftlem3.m | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
cvmliftlem3 | ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem1.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
2 | cvmliftlem.a | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
4 | oveq1 7278 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1)) | |
5 | 4 | oveq1d 7286 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁)) |
6 | oveq1 7278 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁)) | |
7 | 5, 6 | oveq12d 7289 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
8 | cvmliftlem3.3 | . . . . . . 7 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
9 | 7, 8 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊) |
10 | 9 | imaeq2d 5968 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺 “ 𝑊)) |
11 | 2fveq3 6776 | . . . . 5 ⊢ (𝑘 = 𝑀 → (1st ‘(𝑇‘𝑘)) = (1st ‘(𝑇‘𝑀))) | |
12 | 10, 11 | sseq12d 3959 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) ↔ (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
13 | 12 | rspcv 3556 | . . 3 ⊢ (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
14 | 1, 3, 13 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀))) |
15 | cvmliftlem3.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) | |
16 | cvmliftlem.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
17 | iiuni 24042 | . . . . . . . 8 ⊢ (0[,]1) = ∪ II | |
18 | cvmliftlem.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
19 | 17, 18 | cnf 22395 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
22 | 21 | ffund 6602 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → Fun 𝐺) |
23 | cvmliftlem.1 | . . . . . 6 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
24 | cvmliftlem.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐶 | |
25 | cvmliftlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
26 | cvmliftlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
27 | cvmliftlem.e | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
28 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
29 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
30 | cvmliftlem.l | . . . . . 6 ⊢ 𝐿 = (topGen‘ran (,)) | |
31 | 23, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8 | cvmliftlem2 33244 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
32 | 21 | fdmd 6609 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → dom 𝐺 = (0[,]1)) |
33 | 31, 32 | sseqtrrd 3967 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ dom 𝐺) |
34 | funfvima2 7104 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝑊 ⊆ dom 𝐺) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) | |
35 | 22, 33, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) |
36 | 15, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊)) |
37 | 14, 36 | sseldd 3927 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 ∖ cdif 3889 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 {csn 4567 ∪ cuni 4845 ∪ ciun 4930 ↦ cmpt 5162 × cxp 5588 ◡ccnv 5589 dom cdm 5590 ran crn 5591 ↾ cres 5592 “ cima 5593 Fun wfun 6426 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 1st c1st 7822 0cc0 10872 1c1 10873 − cmin 11205 / cdiv 11632 ℕcn 11973 (,)cioo 13078 [,]cicc 13081 ...cfz 13238 ↾t crest 17129 topGenctg 17146 Cn ccn 22373 Homeochmeo 22902 IIcii 24036 CovMap ccvm 33213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-icc 13085 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-top 22041 df-topon 22058 df-bases 22094 df-cn 22376 df-ii 24038 |
This theorem is referenced by: cvmliftlem6 33248 cvmliftlem8 33250 cvmliftlem9 33251 |
Copyright terms: Public domain | W3C validator |