Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem3 Structured version   Visualization version   GIF version

Theorem cvmliftlem3 35028
Description: Lemma for cvmlift 35040. Since 1st ‘(𝑇𝑀) is a neighborhood of (𝐺𝑊), every element 𝐴𝑊 satisfies (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem3.m ((𝜑𝜓) → 𝐴𝑊)
Assertion
Ref Expression
cvmliftlem3 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐴(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem3
StepHypRef Expression
1 cvmliftlem1.m . . 3 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
2 cvmliftlem.a . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
32adantr 479 . . 3 ((𝜑𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
4 oveq1 7426 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1))
54oveq1d 7434 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
6 oveq1 7426 . . . . . . . 8 (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁))
75, 6oveq12d 7437 . . . . . . 7 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
8 cvmliftlem3.3 . . . . . . 7 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
97, 8eqtr4di 2783 . . . . . 6 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊)
109imaeq2d 6064 . . . . 5 (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺𝑊))
11 2fveq3 6901 . . . . 5 (𝑘 = 𝑀 → (1st ‘(𝑇𝑘)) = (1st ‘(𝑇𝑀)))
1210, 11sseq12d 4010 . . . 4 (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) ↔ (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
1312rspcv 3602 . . 3 (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
141, 3, 13sylc 65 . 2 ((𝜑𝜓) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀)))
15 cvmliftlem3.m . . 3 ((𝜑𝜓) → 𝐴𝑊)
16 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
17 iiuni 24845 . . . . . . . 8 (0[,]1) = II
18 cvmliftlem.x . . . . . . . 8 𝑋 = 𝐽
1917, 18cnf 23194 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
2016, 19syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
2120adantr 479 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
2221ffund 6727 . . . 4 ((𝜑𝜓) → Fun 𝐺)
23 cvmliftlem.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
24 cvmliftlem.b . . . . . 6 𝐵 = 𝐶
25 cvmliftlem.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
26 cvmliftlem.p . . . . . 6 (𝜑𝑃𝐵)
27 cvmliftlem.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺‘0))
28 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
29 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
30 cvmliftlem.l . . . . . 6 𝐿 = (topGen‘ran (,))
3123, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8cvmliftlem2 35027 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
3221fdmd 6733 . . . . 5 ((𝜑𝜓) → dom 𝐺 = (0[,]1))
3331, 32sseqtrrd 4018 . . . 4 ((𝜑𝜓) → 𝑊 ⊆ dom 𝐺)
34 funfvima2 7243 . . . 4 ((Fun 𝐺𝑊 ⊆ dom 𝐺) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3522, 33, 34syl2anc 582 . . 3 ((𝜑𝜓) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3615, 35mpd 15 . 2 ((𝜑𝜓) → (𝐺𝐴) ∈ (𝐺𝑊))
3714, 36sseldd 3977 1 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  cdif 3941  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   cuni 4909   ciun 4997  cmpt 5232   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  0cc0 11140  1c1 11141  cmin 11476   / cdiv 11903  cn 12245  (,)cioo 13359  [,]cicc 13362  ...cfz 13519  t crest 17405  topGenctg 17422   Cn ccn 23172  Homeochmeo 23701  IIcii 24839   CovMap ccvm 34996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-icc 13366  df-fz 13520  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cn 23175  df-ii 24841
This theorem is referenced by:  cvmliftlem6  35031  cvmliftlem8  35033  cvmliftlem9  35034
  Copyright terms: Public domain W3C validator