| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35304. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
| cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
| cvmliftlem3.m | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| cvmliftlem3 | ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem1.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
| 2 | cvmliftlem.a | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| 4 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1)) | |
| 5 | 4 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁)) |
| 6 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁)) | |
| 7 | 5, 6 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
| 8 | cvmliftlem3.3 | . . . . . . 7 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
| 9 | 7, 8 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊) |
| 10 | 9 | imaeq2d 6078 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺 “ 𝑊)) |
| 11 | 2fveq3 6911 | . . . . 5 ⊢ (𝑘 = 𝑀 → (1st ‘(𝑇‘𝑘)) = (1st ‘(𝑇‘𝑀))) | |
| 12 | 10, 11 | sseq12d 4017 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) ↔ (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
| 13 | 12 | rspcv 3618 | . . 3 ⊢ (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
| 14 | 1, 3, 13 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀))) |
| 15 | cvmliftlem3.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) | |
| 16 | cvmliftlem.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 17 | iiuni 24907 | . . . . . . . 8 ⊢ (0[,]1) = ∪ II | |
| 18 | cvmliftlem.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 19 | 17, 18 | cnf 23254 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
| 20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
| 22 | 21 | ffund 6740 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → Fun 𝐺) |
| 23 | cvmliftlem.1 | . . . . . 6 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 24 | cvmliftlem.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐶 | |
| 25 | cvmliftlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 26 | cvmliftlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 27 | cvmliftlem.e | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
| 28 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 29 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
| 30 | cvmliftlem.l | . . . . . 6 ⊢ 𝐿 = (topGen‘ran (,)) | |
| 31 | 23, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8 | cvmliftlem2 35291 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| 32 | 21 | fdmd 6746 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → dom 𝐺 = (0[,]1)) |
| 33 | 31, 32 | sseqtrrd 4021 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ dom 𝐺) |
| 34 | funfvima2 7251 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝑊 ⊆ dom 𝐺) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) | |
| 35 | 22, 33, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) |
| 36 | 15, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊)) |
| 37 | 14, 36 | sseldd 3984 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 ∪ cuni 4907 ∪ ciun 4991 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 dom cdm 5685 ran crn 5686 ↾ cres 5687 “ cima 5688 Fun wfun 6555 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 0cc0 11155 1c1 11156 − cmin 11492 / cdiv 11920 ℕcn 12266 (,)cioo 13387 [,]cicc 13390 ...cfz 13547 ↾t crest 17465 topGenctg 17482 Cn ccn 23232 Homeochmeo 23761 IIcii 24901 CovMap ccvm 35260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cn 23235 df-ii 24903 |
| This theorem is referenced by: cvmliftlem6 35295 cvmliftlem8 35297 cvmliftlem9 35298 |
| Copyright terms: Public domain | W3C validator |