Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem3 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 33261. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
cvmliftlem3.m | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
cvmliftlem3 | ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem1.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
2 | cvmliftlem.a | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
4 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1)) | |
5 | 4 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁)) |
6 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁)) | |
7 | 5, 6 | oveq12d 7293 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
8 | cvmliftlem3.3 | . . . . . . 7 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
9 | 7, 8 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊) |
10 | 9 | imaeq2d 5969 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺 “ 𝑊)) |
11 | 2fveq3 6779 | . . . . 5 ⊢ (𝑘 = 𝑀 → (1st ‘(𝑇‘𝑘)) = (1st ‘(𝑇‘𝑀))) | |
12 | 10, 11 | sseq12d 3954 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) ↔ (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
13 | 12 | rspcv 3557 | . . 3 ⊢ (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘)) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀)))) |
14 | 1, 3, 13 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺 “ 𝑊) ⊆ (1st ‘(𝑇‘𝑀))) |
15 | cvmliftlem3.m | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) | |
16 | cvmliftlem.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
17 | iiuni 24044 | . . . . . . . 8 ⊢ (0[,]1) = ∪ II | |
18 | cvmliftlem.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
19 | 17, 18 | cnf 22397 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
22 | 21 | ffund 6604 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → Fun 𝐺) |
23 | cvmliftlem.1 | . . . . . 6 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
24 | cvmliftlem.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐶 | |
25 | cvmliftlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
26 | cvmliftlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
27 | cvmliftlem.e | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
28 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
29 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
30 | cvmliftlem.l | . . . . . 6 ⊢ 𝐿 = (topGen‘ran (,)) | |
31 | 23, 24, 18, 25, 16, 26, 27, 28, 29, 2, 30, 1, 8 | cvmliftlem2 33248 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
32 | 21 | fdmd 6611 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → dom 𝐺 = (0[,]1)) |
33 | 31, 32 | sseqtrrd 3962 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ dom 𝐺) |
34 | funfvima2 7107 | . . . 4 ⊢ ((Fun 𝐺 ∧ 𝑊 ⊆ dom 𝐺) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) | |
35 | 22, 33, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∈ 𝑊 → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊))) |
36 | 15, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (𝐺 “ 𝑊)) |
37 | 14, 36 | sseldd 3922 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 0cc0 10871 1c1 10872 − cmin 11205 / cdiv 11632 ℕcn 11973 (,)cioo 13079 [,]cicc 13082 ...cfz 13239 ↾t crest 17131 topGenctg 17148 Cn ccn 22375 Homeochmeo 22904 IIcii 24038 CovMap ccvm 33217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 df-ii 24040 |
This theorem is referenced by: cvmliftlem6 33252 cvmliftlem8 33254 cvmliftlem9 33255 |
Copyright terms: Public domain | W3C validator |