Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyaddlem1 Structured version   Visualization version   GIF version

 Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyaddlem.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyaddlem.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyaddlem.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyaddlem1 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝑧,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑧,𝑘)   𝐵(𝑧)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)   𝑀(𝑧)   𝑁(𝑧)

StepHypRef Expression
1 cnex 10610 . . . 4 ℂ ∈ V
21a1i 11 . . 3 (𝜑 → ℂ ∈ V)
3 sumex 15039 . . . 4 Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V
43a1i 11 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V)
5 sumex 15039 . . . 4 Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V
65a1i 11 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V)
7 plyaddlem.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
8 plyaddlem.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
92, 4, 6, 7, 8offval2 7409 . 2 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))))
10 fzfid 13339 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...if(𝑀𝑁, 𝑁, 𝑀)) ∈ Fin)
11 elfznn0 12998 . . . . . 6 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
12 plyaddlem.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
1312adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
1413ffvelrnda 6829 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
15 expcl 13446 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
1615adantll 713 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
1714, 16mulcld 10653 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
1811, 17sylan2 595 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
19 plyaddlem.b . . . . . . . . 9 (𝜑𝐵:ℕ0⟶ℂ)
2019adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
2120ffvelrnda 6829 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
2221, 16mulcld 10653 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
2311, 22sylan2 595 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
2410, 18, 23fsumadd 15091 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘))))
2512ffnd 6489 . . . . . . . . . 10 (𝜑𝐴 Fn ℕ0)
2619ffnd 6489 . . . . . . . . . 10 (𝜑𝐵 Fn ℕ0)
27 nn0ex 11894 . . . . . . . . . . 11 0 ∈ V
2827a1i 11 . . . . . . . . . 10 (𝜑 → ℕ0 ∈ V)
29 inidm 4145 . . . . . . . . . 10 (ℕ0 ∩ ℕ0) = ℕ0
30 eqidd 2799 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
31 eqidd 2799 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3225, 26, 28, 28, 29, 30, 31ofval 7400 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3332adantlr 714 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3433oveq1d 7151 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) + (𝐵𝑘)) · (𝑧𝑘)))
3514, 21, 16adddird 10658 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) + (𝐵𝑘)) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
3634, 35eqtrd 2833 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
3711, 36sylan2 595 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → (((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
3837sumeq2dv 15055 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
39 plyaddlem.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
4039nn0zd 12076 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
41 plyaddlem.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4241, 39ifcld 4470 . . . . . . . . . 10 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
4342nn0zd 12076 . . . . . . . . 9 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
4439nn0red 11947 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
4541nn0red 11947 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
46 max1 12569 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4744, 45, 46syl2anc 587 . . . . . . . . 9 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
48 eluz2 12240 . . . . . . . . 9 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
4940, 43, 47, 48syl3anbrc 1340 . . . . . . . 8 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
50 fzss2 12945 . . . . . . . 8 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
5149, 50syl 17 . . . . . . 7 (𝜑 → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
5251adantr 484 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
53 elfznn0 12998 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
5453, 17sylan2 595 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
55 eldifn 4055 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀))
5655adantl 485 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀))
57 eldifi 4054 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)))
5857, 11syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0)
5958adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0)
60 nn0uz 12271 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
61 peano2nn0 11928 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
6239, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6362, 60eleqtrdi 2900 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 + 1) ∈ (ℤ‘0))
64 uzsplit 12977 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
6563, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
6660, 65syl5eq 2845 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
6739nn0cnd 11948 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
68 ax-1cn 10587 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
69 pncan 10884 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7067, 68, 69sylancl 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7170oveq2d 7152 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀))
7271uneq1d 4089 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7366, 72eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝜑 → ℕ0 = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7473ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7559, 74eleqtrd 2892 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
76 elun 4076 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ‘(𝑀 + 1))))
7775, 76sylib 221 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ‘(𝑀 + 1))))
7877ord 861 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘(𝑀 + 1))))
7956, 78mpd 15 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
8012ffund 6492 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐴)
81 ssun2 4100 . . . . . . . . . . . . . . 15 (ℤ‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1)))
8281, 66sseqtrrid 3968 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ℕ0)
8312fdmd 6498 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐴 = ℕ0)
8482, 83sseqtrrd 3956 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ dom 𝐴)
85 funfvima2 6972 . . . . . . . . . . . . 13 ((Fun 𝐴 ∧ (ℤ‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
8680, 84, 85syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
8786ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
8879, 87mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1))))
89 plyaddlem.a2 . . . . . . . . . . 11 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
9089ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
9188, 90eleqtrd 2892 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) ∈ {0})
92 elsni 4542 . . . . . . . . 9 ((𝐴𝑘) ∈ {0} → (𝐴𝑘) = 0)
9391, 92syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) = 0)
9493oveq1d 7151 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
9558, 16sylan2 595 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑧𝑘) ∈ ℂ)
9695mul02d 10830 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (0 · (𝑧𝑘)) = 0)
9794, 96eqtrd 2833 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
9852, 54, 97, 10fsumss 15077 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)))
9941nn0zd 12076 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
100 max2 12571 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
10144, 45, 100syl2anc 587 . . . . . . . . 9 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
102 eluz2 12240 . . . . . . . . 9 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
10399, 43, 101, 102syl3anbrc 1340 . . . . . . . 8 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
104 fzss2 12945 . . . . . . . 8 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
105103, 104syl 17 . . . . . . 7 (𝜑 → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
106105adantr 484 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
107 elfznn0 12998 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
108107, 22sylan2 595 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
109 eldifn 4055 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
110109adantl 485 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
111 eldifi 4054 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)))
112111, 11syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
113112adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
114 peano2nn0 11928 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
11541, 114syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 + 1) ∈ ℕ0)
116115, 60eleqtrdi 2900 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
117 uzsplit 12977 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
11960, 118syl5eq 2845 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
12041nn0cnd 11948 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
121 pncan 10884 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
122120, 68, 121sylancl 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
123122oveq2d 7152 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
124123uneq1d 4089 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
125119, 124eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
126125ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
127113, 126eleqtrd 2892 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
128 elun 4076 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
129127, 128sylib 221 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
130129ord 861 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → 𝑘 ∈ (ℤ‘(𝑁 + 1))))
131110, 130mpd 15 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
13219ffund 6492 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐵)
133 ssun2 4100 . . . . . . . . . . . . . . 15 (ℤ‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1)))
134133, 119sseqtrrid 3968 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
13519fdmd 6498 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐵 = ℕ0)
136134, 135sseqtrrd 3956 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐵)
137 funfvima2 6972 . . . . . . . . . . . . 13 ((Fun 𝐵 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
138132, 136, 137syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
139138ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
140131, 139mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1))))
141 plyaddlem.b2 . . . . . . . . . . 11 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
142141ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
143140, 142eleqtrd 2892 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) ∈ {0})
144 elsni 4542 . . . . . . . . 9 ((𝐵𝑘) ∈ {0} → (𝐵𝑘) = 0)
145143, 144syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) = 0)
146145oveq1d 7151 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
147112, 16sylan2 595 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
148147mul02d 10830 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
149146, 148eqtrd 2833 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = 0)
150106, 108, 149, 10fsumss 15077 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘)))
15198, 150oveq12d 7154 . . . 4 ((𝜑𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘))))
15224, 38, 1513eqtr4d 2843 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘)) = (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
153152mpteq2dva 5126 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))))
1549, 153eqtr4d 2836 1 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ⊆ wss 3881  ifcif 4425  {csn 4525   class class class wbr 5031   ↦ cmpt 5111  dom cdm 5520   “ cima 5523  Fun wfun 6319  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∘f cof 7389  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   ≤ cle 10668   − cmin 10862  ℕ0cn0 11888  ℤcz 11972  ℤ≥cuz 12234  ...cfz 12888  ↑cexp 13428  Σcsu 15037  Polycply 24791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038 This theorem is referenced by:  plyaddlem  24822  coeaddlem  24856
 Copyright terms: Public domain W3C validator