![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ifchhv | Structured version Visualization version GIF version |
Description: Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ifchhv | ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch 28672 | . 2 ⊢ ℋ ∈ Cℋ | |
2 | 1 | elimel 4374 | 1 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ifcif 4307 ℋchba 28348 Cℋ cch 28358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-1cn 10330 ax-addcl 10332 ax-hilex 28428 ax-hfvadd 28429 ax-hv0cl 28432 ax-hfvmul 28434 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-map 8142 df-nn 11375 df-hlim 28401 df-sh 28636 df-ch 28650 |
This theorem is referenced by: pjhth 28824 ococ 28837 pjoc1 28865 chincl 28930 chsscon3 28931 chjo 28946 chdmm1 28956 chjass 28964 pjoml3 29043 osum 29076 spansnj 29078 spansncv 29084 pjcjt2 29123 pjch 29125 pjopyth 29151 pjnorm 29155 pjpyth 29156 pjnel 29157 cvmd 29767 chrelat2 29801 cvexch 29805 mdsym 29843 |
Copyright terms: Public domain | W3C validator |