| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifchhv | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifchhv | ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helch 31172 | . 2 ⊢ ℋ ∈ Cℋ | |
| 2 | 1 | elimel 4558 | 1 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4488 ℋchba 30848 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-hlim 30901 df-sh 31136 df-ch 31150 |
| This theorem is referenced by: pjhth 31322 ococ 31335 pjoc1 31363 chincl 31428 chsscon3 31429 chjo 31444 chdmm1 31454 chjass 31462 pjoml3 31541 osum 31574 spansnj 31576 spansncv 31582 pjcjt2 31621 pjch 31623 pjopyth 31649 pjnorm 31653 pjpyth 31654 pjnel 31655 cvmd 32265 chrelat2 32299 cvexch 32303 mdsym 32341 |
| Copyright terms: Public domain | W3C validator |