HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ifchhv Structured version   Visualization version   GIF version

Theorem ifchhv 31273
Description: Prove if(𝐴C , 𝐴, ℋ) ∈ C. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.)
Assertion
Ref Expression
ifchhv if(𝐴C , 𝐴, ℋ) ∈ C

Proof of Theorem ifchhv
StepHypRef Expression
1 helch 31272 . 2 ℋ ∈ C
21elimel 4600 1 if(𝐴C , 𝐴, ℋ) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  ifcif 4531  chba 30948   C cch 30958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213  ax-hilex 31028  ax-hfvadd 31029  ax-hv0cl 31032  ax-hfvmul 31034
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-map 8867  df-nn 12265  df-hlim 31001  df-sh 31236  df-ch 31250
This theorem is referenced by:  pjhth  31422  ococ  31435  pjoc1  31463  chincl  31528  chsscon3  31529  chjo  31544  chdmm1  31554  chjass  31562  pjoml3  31641  osum  31674  spansnj  31676  spansncv  31682  pjcjt2  31721  pjch  31723  pjopyth  31749  pjnorm  31753  pjpyth  31754  pjnel  31755  cvmd  32365  chrelat2  32399  cvexch  32403  mdsym  32441
  Copyright terms: Public domain W3C validator