| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifchhv | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifchhv | ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helch 31187 | . 2 ⊢ ℋ ∈ Cℋ | |
| 2 | 1 | elimel 4546 | 1 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4476 ℋchba 30863 Cℋ cch 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 ax-hilex 30943 ax-hfvadd 30944 ax-hv0cl 30947 ax-hfvmul 30949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-map 8755 df-nn 12129 df-hlim 30916 df-sh 31151 df-ch 31165 |
| This theorem is referenced by: pjhth 31337 ococ 31350 pjoc1 31378 chincl 31443 chsscon3 31444 chjo 31459 chdmm1 31469 chjass 31477 pjoml3 31556 osum 31589 spansnj 31591 spansncv 31597 pjcjt2 31636 pjch 31638 pjopyth 31664 pjnorm 31668 pjpyth 31669 pjnel 31670 cvmd 32280 chrelat2 32314 cvexch 32318 mdsym 32356 |
| Copyright terms: Public domain | W3C validator |