MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem8 Structured version   Visualization version   GIF version

Theorem isf32lem8 10116
Description: Lemma for isfin3-2 10123. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem8 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ⊆ 𝐺)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem8
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6775 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4015 . . . . . . 7 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 10113 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 10083 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 587 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6716 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6867 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 580 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1613ffvelrnda 6961 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
17 fveq2 6774 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
18 suceq 6331 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
1918fveq2d 6778 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2017, 19difeq12d 4058 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
21 eqid 2738 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
22 fvex 6787 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
2322difexi 5252 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2420, 21, 23fvmpt 6875 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2516, 24syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2615, 25eqtrd 2778 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
272, 26eqtrid 2790 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
285adantr 481 . . . . 5 ((𝜑𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺)
294, 16sselid 3919 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ ω)
3028, 29ffvelrnd 6962 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘(𝐽𝐴)) ∈ 𝒫 𝐺)
3130elpwid 4544 . . 3 ((𝜑𝐴 ∈ ω) → (𝐹‘(𝐽𝐴)) ⊆ 𝐺)
3231ssdifssd 4077 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ⊆ 𝐺)
3327, 32eqsstrd 3959 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ⊆ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cin 3886  wss 3887  wpss 3888  𝒫 cpw 4533   cint 4879   class class class wbr 5074  cmpt 5157  ran crn 5590  ccom 5593  suc csuc 6268  wf 6429  1-1-ontowf1o 6432  cfv 6433  crio 7231  ωcom 7712  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697
This theorem is referenced by:  isf32lem9  10117
  Copyright terms: Public domain W3C validator