Step | Hyp | Ref
| Expression |
1 | | isf32lem.f |
. . . 4
β’ πΎ = ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½) |
2 | 1 | fveq1i 6893 |
. . 3
β’ (πΎβπ΄) = (((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½)βπ΄) |
3 | | isf32lem.d |
. . . . . . . 8
β’ π = {π¦ β Ο β£ (πΉβsuc π¦) β (πΉβπ¦)} |
4 | 3 | ssrab3 4081 |
. . . . . . 7
β’ π β
Ο |
5 | | isf32lem.a |
. . . . . . . 8
β’ (π β πΉ:ΟβΆπ« πΊ) |
6 | | isf32lem.b |
. . . . . . . 8
β’ (π β βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) |
7 | | isf32lem.c |
. . . . . . . 8
β’ (π β Β¬ β© ran πΉ β ran πΉ) |
8 | 5, 6, 7, 3 | isf32lem5 10355 |
. . . . . . 7
β’ (π β Β¬ π β Fin) |
9 | | isf32lem.e |
. . . . . . . 8
β’ π½ = (π’ β Ο β¦ (β©π£ β π (π£ β© π) β π’)) |
10 | 9 | fin23lem22 10325 |
. . . . . . 7
β’ ((π β Ο β§ Β¬
π β Fin) β π½:Οβ1-1-ontoβπ) |
11 | 4, 8, 10 | sylancr 586 |
. . . . . 6
β’ (π β π½:Οβ1-1-ontoβπ) |
12 | | f1of 6834 |
. . . . . 6
β’ (π½:Οβ1-1-ontoβπ β π½:ΟβΆπ) |
13 | 11, 12 | syl 17 |
. . . . 5
β’ (π β π½:ΟβΆπ) |
14 | | fvco3 6991 |
. . . . 5
β’ ((π½:ΟβΆπ β§ π΄ β Ο) β (((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½)βπ΄) = ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€)))β(π½βπ΄))) |
15 | 13, 14 | sylan 579 |
. . . 4
β’ ((π β§ π΄ β Ο) β (((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½)βπ΄) = ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€)))β(π½βπ΄))) |
16 | 13 | ffvelcdmda 7087 |
. . . . 5
β’ ((π β§ π΄ β Ο) β (π½βπ΄) β π) |
17 | | fveq2 6892 |
. . . . . . 7
β’ (π€ = (π½βπ΄) β (πΉβπ€) = (πΉβ(π½βπ΄))) |
18 | | suceq 6431 |
. . . . . . . 8
β’ (π€ = (π½βπ΄) β suc π€ = suc (π½βπ΄)) |
19 | 18 | fveq2d 6896 |
. . . . . . 7
β’ (π€ = (π½βπ΄) β (πΉβsuc π€) = (πΉβsuc (π½βπ΄))) |
20 | 17, 19 | difeq12d 4124 |
. . . . . 6
β’ (π€ = (π½βπ΄) β ((πΉβπ€) β (πΉβsuc π€)) = ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄)))) |
21 | | eqid 2731 |
. . . . . 6
β’ (π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) = (π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) |
22 | | fvex 6905 |
. . . . . . 7
β’ (πΉβ(π½βπ΄)) β V |
23 | 22 | difexi 5329 |
. . . . . 6
β’ ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄))) β V |
24 | 20, 21, 23 | fvmpt 6999 |
. . . . 5
β’ ((π½βπ΄) β π β ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€)))β(π½βπ΄)) = ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄)))) |
25 | 16, 24 | syl 17 |
. . . 4
β’ ((π β§ π΄ β Ο) β ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€)))β(π½βπ΄)) = ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄)))) |
26 | 15, 25 | eqtrd 2771 |
. . 3
β’ ((π β§ π΄ β Ο) β (((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½)βπ΄) = ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄)))) |
27 | 2, 26 | eqtrid 2783 |
. 2
β’ ((π β§ π΄ β Ο) β (πΎβπ΄) = ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄)))) |
28 | 5 | adantr 480 |
. . . . 5
β’ ((π β§ π΄ β Ο) β πΉ:ΟβΆπ« πΊ) |
29 | 4, 16 | sselid 3981 |
. . . . 5
β’ ((π β§ π΄ β Ο) β (π½βπ΄) β Ο) |
30 | 28, 29 | ffvelcdmd 7088 |
. . . 4
β’ ((π β§ π΄ β Ο) β (πΉβ(π½βπ΄)) β π« πΊ) |
31 | 30 | elpwid 4612 |
. . 3
β’ ((π β§ π΄ β Ο) β (πΉβ(π½βπ΄)) β πΊ) |
32 | 31 | ssdifssd 4143 |
. 2
β’ ((π β§ π΄ β Ο) β ((πΉβ(π½βπ΄)) β (πΉβsuc (π½βπ΄))) β πΊ) |
33 | 27, 32 | eqsstrd 4021 |
1
β’ ((π β§ π΄ β Ο) β (πΎβπ΄) β πΊ) |