| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 10327. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.) |
| Ref | Expression |
|---|---|
| isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
| isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
| isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
| isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
| isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
| isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
| Ref | Expression |
|---|---|
| isf32lem8 | ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.f | . . . 4 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
| 2 | 1 | fveq1i 6862 | . . 3 ⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
| 3 | isf32lem.d | . . . . . . . 8 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
| 4 | 3 | ssrab3 4048 | . . . . . . 7 ⊢ 𝑆 ⊆ ω |
| 5 | isf32lem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
| 6 | isf32lem.b | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
| 7 | isf32lem.c | . . . . . . . 8 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 8 | 5, 6, 7, 3 | isf32lem5 10317 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
| 9 | isf32lem.e | . . . . . . . 8 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
| 10 | 9 | fin23lem22 10287 | . . . . . . 7 ⊢ ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
| 11 | 4, 8, 10 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
| 12 | f1of 6803 | . . . . . 6 ⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽:ω⟶𝑆) |
| 14 | fvco3 6963 | . . . . 5 ⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) | |
| 15 | 13, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
| 16 | 13 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
| 17 | fveq2 6861 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) | |
| 18 | suceq 6403 | . . . . . . . 8 ⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) | |
| 19 | 18 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
| 20 | 17, 19 | difeq12d 4093 | . . . . . 6 ⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 21 | eqid 2730 | . . . . . 6 ⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) | |
| 22 | fvex 6874 | . . . . . . 7 ⊢ (𝐹‘(𝐽‘𝐴)) ∈ V | |
| 23 | 22 | difexi 5288 | . . . . . 6 ⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
| 24 | 20, 21, 23 | fvmpt 6971 | . . . . 5 ⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 26 | 15, 25 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 27 | 2, 26 | eqtrid 2777 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 28 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺) |
| 29 | 4, 16 | sselid 3947 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ ω) |
| 30 | 28, 29 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ∈ 𝒫 𝐺) |
| 31 | 30 | elpwid 4575 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ⊆ 𝐺) |
| 32 | 31 | ssdifssd 4113 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ⊆ 𝐺) |
| 33 | 27, 32 | eqsstrd 3984 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ⊊ wpss 3918 𝒫 cpw 4566 ∩ cint 4913 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ∘ ccom 5645 suc csuc 6337 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 ℩crio 7346 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 |
| This theorem is referenced by: isf32lem9 10321 |
| Copyright terms: Public domain | W3C validator |