![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem8 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10404. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
Ref | Expression |
---|---|
isf32lem8 | ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.f | . . . 4 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
2 | 1 | fveq1i 6907 | . . 3 ⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
3 | isf32lem.d | . . . . . . . 8 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
4 | 3 | ssrab3 4091 | . . . . . . 7 ⊢ 𝑆 ⊆ ω |
5 | isf32lem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
6 | isf32lem.b | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
7 | isf32lem.c | . . . . . . . 8 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
8 | 5, 6, 7, 3 | isf32lem5 10394 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
9 | isf32lem.e | . . . . . . . 8 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
10 | 9 | fin23lem22 10364 | . . . . . . 7 ⊢ ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
11 | 4, 8, 10 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
12 | f1of 6848 | . . . . . 6 ⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽:ω⟶𝑆) |
14 | fvco3 7007 | . . . . 5 ⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) | |
15 | 13, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
16 | 13 | ffvelcdmda 7103 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
17 | fveq2 6906 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) | |
18 | suceq 6451 | . . . . . . . 8 ⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) | |
19 | 18 | fveq2d 6910 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
20 | 17, 19 | difeq12d 4136 | . . . . . 6 ⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
21 | eqid 2734 | . . . . . 6 ⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) | |
22 | fvex 6919 | . . . . . . 7 ⊢ (𝐹‘(𝐽‘𝐴)) ∈ V | |
23 | 22 | difexi 5335 | . . . . . 6 ⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
24 | 20, 21, 23 | fvmpt 7015 | . . . . 5 ⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
26 | 15, 25 | eqtrd 2774 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
27 | 2, 26 | eqtrid 2786 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
28 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺) |
29 | 4, 16 | sselid 3992 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ ω) |
30 | 28, 29 | ffvelcdmd 7104 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ∈ 𝒫 𝐺) |
31 | 30 | elpwid 4613 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ⊆ 𝐺) |
32 | 31 | ssdifssd 4156 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ⊆ 𝐺) |
33 | 27, 32 | eqsstrd 4033 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 {crab 3432 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ⊊ wpss 3963 𝒫 cpw 4604 ∩ cint 4950 class class class wbr 5147 ↦ cmpt 5230 ran crn 5689 ∘ ccom 5692 suc csuc 6387 ⟶wf 6558 –1-1-onto→wf1o 6561 ‘cfv 6562 ℩crio 7386 ωcom 7886 ≈ cen 8980 Fincfn 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 |
This theorem is referenced by: isf32lem9 10398 |
Copyright terms: Public domain | W3C validator |