MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem8 Structured version   Visualization version   GIF version

Theorem isf32lem8 10293
Description: Lemma for isfin3-2 10300. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem8 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ⊆ 𝐺)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem8
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6841 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4039 . . . . . . 7 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 10290 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 10260 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 587 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6782 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6938 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 580 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1613ffvelcdmda 7032 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
17 fveq2 6840 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
18 suceq 6382 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
1918fveq2d 6844 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2017, 19difeq12d 4082 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
21 eqid 2736 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
22 fvex 6853 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
2322difexi 5284 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2420, 21, 23fvmpt 6946 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2516, 24syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2615, 25eqtrd 2776 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
272, 26eqtrid 2788 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
285adantr 481 . . . . 5 ((𝜑𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺)
294, 16sselid 3941 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ ω)
3028, 29ffvelcdmd 7033 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘(𝐽𝐴)) ∈ 𝒫 𝐺)
3130elpwid 4568 . . 3 ((𝜑𝐴 ∈ ω) → (𝐹‘(𝐽𝐴)) ⊆ 𝐺)
3231ssdifssd 4101 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ⊆ 𝐺)
3327, 32eqsstrd 3981 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ⊆ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3063  {crab 3406  cdif 3906  cin 3908  wss 3909  wpss 3910  𝒫 cpw 4559   cint 4906   class class class wbr 5104  cmpt 5187  ran crn 5633  ccom 5636  suc csuc 6318  wf 6490  1-1-ontowf1o 6493  cfv 6494  crio 7309  ωcom 7799  cen 8877  Fincfn 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7310  df-ov 7357  df-om 7800  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-1o 8409  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-card 9872
This theorem is referenced by:  isf32lem9  10294
  Copyright terms: Public domain W3C validator