Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem8 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10123. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
Ref | Expression |
---|---|
isf32lem8 | ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.f | . . . 4 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
2 | 1 | fveq1i 6775 | . . 3 ⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
3 | isf32lem.d | . . . . . . . 8 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
4 | 3 | ssrab3 4015 | . . . . . . 7 ⊢ 𝑆 ⊆ ω |
5 | isf32lem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
6 | isf32lem.b | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
7 | isf32lem.c | . . . . . . . 8 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
8 | 5, 6, 7, 3 | isf32lem5 10113 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
9 | isf32lem.e | . . . . . . . 8 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
10 | 9 | fin23lem22 10083 | . . . . . . 7 ⊢ ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
11 | 4, 8, 10 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
12 | f1of 6716 | . . . . . 6 ⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽:ω⟶𝑆) |
14 | fvco3 6867 | . . . . 5 ⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) | |
15 | 13, 14 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
16 | 13 | ffvelrnda 6961 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
17 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) | |
18 | suceq 6331 | . . . . . . . 8 ⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) | |
19 | 18 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
20 | 17, 19 | difeq12d 4058 | . . . . . 6 ⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
21 | eqid 2738 | . . . . . 6 ⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) | |
22 | fvex 6787 | . . . . . . 7 ⊢ (𝐹‘(𝐽‘𝐴)) ∈ V | |
23 | 22 | difexi 5252 | . . . . . 6 ⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
24 | 20, 21, 23 | fvmpt 6875 | . . . . 5 ⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
26 | 15, 25 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
27 | 2, 26 | eqtrid 2790 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
28 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺) |
29 | 4, 16 | sselid 3919 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ ω) |
30 | 28, 29 | ffvelrnd 6962 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ∈ 𝒫 𝐺) |
31 | 30 | elpwid 4544 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ⊆ 𝐺) |
32 | 31 | ssdifssd 4077 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ⊆ 𝐺) |
33 | 27, 32 | eqsstrd 3959 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ⊊ wpss 3888 𝒫 cpw 4533 ∩ cint 4879 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ∘ ccom 5593 suc csuc 6268 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 ℩crio 7231 ωcom 7712 ≈ cen 8730 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 |
This theorem is referenced by: isf32lem9 10117 |
Copyright terms: Public domain | W3C validator |