MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recrec Structured version   Visualization version   GIF version

Theorem recrec 11821
Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 26-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recrec ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)

Proof of Theorem recrec
StepHypRef Expression
1 recid2 11794 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
2 1cnd 11110 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
3 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
4 reccl 11786 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
5 recne0 11792 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0)
6 divmul 11782 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0)) → ((1 / (1 / 𝐴)) = 𝐴 ↔ ((1 / 𝐴) · 𝐴) = 1))
72, 3, 4, 5, 6syl112anc 1376 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / (1 / 𝐴)) = 𝐴 ↔ ((1 / 𝐴) · 𝐴) = 1))
81, 7mpbird 257 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778
This theorem is referenced by:  recreci  11856  recrecd  11897  ltrec1  12012  lerec2  12013  resqrex  15157  logrec  26671  rlimcnp  26873  rlimcnp2  26874  recsec  49741  reccsc  49742
  Copyright terms: Public domain W3C validator