Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco4 Structured version   Visualization version   GIF version

Theorem ltrnco4 39913
Description: Rearrange a composition of 4 translations, analogous to an4 652. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnco4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐷𝐸) ∘ (𝐹𝐺)) = ((𝐷𝐹) ∘ (𝐸𝐺)))

Proof of Theorem ltrnco4
StepHypRef Expression
1 ltrncom.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 ltrncom.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrncom 39912 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐸𝐹) = (𝐹𝐸))
43coeq1d 5860 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐸𝐹) ∘ 𝐺) = ((𝐹𝐸) ∘ 𝐺))
5 coass 6263 . . . 4 ((𝐸𝐹) ∘ 𝐺) = (𝐸 ∘ (𝐹𝐺))
6 coass 6263 . . . 4 ((𝐹𝐸) ∘ 𝐺) = (𝐹 ∘ (𝐸𝐺))
74, 5, 63eqtr3g 2793 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐸 ∘ (𝐹𝐺)) = (𝐹 ∘ (𝐸𝐺)))
87coeq2d 5861 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐷 ∘ (𝐸 ∘ (𝐹𝐺))) = (𝐷 ∘ (𝐹 ∘ (𝐸𝐺))))
9 coass 6263 . 2 ((𝐷𝐸) ∘ (𝐹𝐺)) = (𝐷 ∘ (𝐸 ∘ (𝐹𝐺)))
10 coass 6263 . 2 ((𝐷𝐹) ∘ (𝐸𝐺)) = (𝐷 ∘ (𝐹 ∘ (𝐸𝐺)))
118, 9, 103eqtr4g 2795 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐷𝐸) ∘ (𝐹𝐺)) = ((𝐷𝐹) ∘ (𝐸𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  ccom 5679  cfv 6542  HLchlt 38523  LHypclh 39158  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  tendoco2  39942
  Copyright terms: Public domain W3C validator