![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnco4 | Structured version Visualization version GIF version |
Description: Rearrange a composition of 4 translations, analogous to an4 656. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
ltrncom.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrncom.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnco4 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrncom.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | ltrncom.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | ltrncom 40721 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ 𝐹) = (𝐹 ∘ 𝐸)) |
4 | 3 | coeq1d 5875 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐸 ∘ 𝐹) ∘ 𝐺) = ((𝐹 ∘ 𝐸) ∘ 𝐺)) |
5 | coass 6287 | . . . 4 ⊢ ((𝐸 ∘ 𝐹) ∘ 𝐺) = (𝐸 ∘ (𝐹 ∘ 𝐺)) | |
6 | coass 6287 | . . . 4 ⊢ ((𝐹 ∘ 𝐸) ∘ 𝐺) = (𝐹 ∘ (𝐸 ∘ 𝐺)) | |
7 | 4, 5, 6 | 3eqtr3g 2798 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ (𝐹 ∘ 𝐺)) = (𝐹 ∘ (𝐸 ∘ 𝐺))) |
8 | 7 | coeq2d 5876 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺)))) |
9 | coass 6287 | . 2 ⊢ ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) | |
10 | coass 6287 | . 2 ⊢ ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺)) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺))) | |
11 | 8, 9, 10 | 3eqtr4g 2800 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∘ ccom 5693 ‘cfv 6563 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-undef 8297 df-map 8867 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 |
This theorem is referenced by: tendoco2 40751 |
Copyright terms: Public domain | W3C validator |