![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnco4 | Structured version Visualization version GIF version |
Description: Rearrange a composition of 4 translations, analogous to an4 652. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
ltrncom.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrncom.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnco4 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrncom.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | ltrncom.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | ltrncom 39912 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ 𝐹) = (𝐹 ∘ 𝐸)) |
4 | 3 | coeq1d 5860 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐸 ∘ 𝐹) ∘ 𝐺) = ((𝐹 ∘ 𝐸) ∘ 𝐺)) |
5 | coass 6263 | . . . 4 ⊢ ((𝐸 ∘ 𝐹) ∘ 𝐺) = (𝐸 ∘ (𝐹 ∘ 𝐺)) | |
6 | coass 6263 | . . . 4 ⊢ ((𝐹 ∘ 𝐸) ∘ 𝐺) = (𝐹 ∘ (𝐸 ∘ 𝐺)) | |
7 | 4, 5, 6 | 3eqtr3g 2793 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ (𝐹 ∘ 𝐺)) = (𝐹 ∘ (𝐸 ∘ 𝐺))) |
8 | 7 | coeq2d 5861 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺)))) |
9 | coass 6263 | . 2 ⊢ ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) | |
10 | coass 6263 | . 2 ⊢ ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺)) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺))) | |
11 | 8, 9, 10 | 3eqtr4g 2795 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∘ ccom 5679 ‘cfv 6542 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-undef 8260 df-map 8824 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 |
This theorem is referenced by: tendoco2 39942 |
Copyright terms: Public domain | W3C validator |