![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnco4 | Structured version Visualization version GIF version |
Description: Rearrange a composition of 4 translations, analogous to an4 646. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
ltrncom.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrncom.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnco4 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrncom.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | ltrncom.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | ltrncom 36887 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ 𝐹) = (𝐹 ∘ 𝐸)) |
4 | 3 | coeq1d 5529 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐸 ∘ 𝐹) ∘ 𝐺) = ((𝐹 ∘ 𝐸) ∘ 𝐺)) |
5 | coass 5908 | . . . 4 ⊢ ((𝐸 ∘ 𝐹) ∘ 𝐺) = (𝐸 ∘ (𝐹 ∘ 𝐺)) | |
6 | coass 5908 | . . . 4 ⊢ ((𝐹 ∘ 𝐸) ∘ 𝐺) = (𝐹 ∘ (𝐸 ∘ 𝐺)) | |
7 | 4, 5, 6 | 3eqtr3g 2836 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐸 ∘ (𝐹 ∘ 𝐺)) = (𝐹 ∘ (𝐸 ∘ 𝐺))) |
8 | 7 | coeq2d 5530 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺)))) |
9 | coass 5908 | . 2 ⊢ ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = (𝐷 ∘ (𝐸 ∘ (𝐹 ∘ 𝐺))) | |
10 | coass 5908 | . 2 ⊢ ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺)) = (𝐷 ∘ (𝐹 ∘ (𝐸 ∘ 𝐺))) | |
11 | 8, 9, 10 | 3eqtr4g 2838 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ∘ ccom 5359 ‘cfv 6135 HLchlt 35499 LHypclh 36133 LTrncltrn 36250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-riotaBAD 35102 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-undef 7681 df-map 8142 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-oposet 35325 df-ol 35327 df-oml 35328 df-covers 35415 df-ats 35416 df-atl 35447 df-cvlat 35471 df-hlat 35500 df-llines 35647 df-lplanes 35648 df-lvols 35649 df-lines 35650 df-psubsp 35652 df-pmap 35653 df-padd 35945 df-lhyp 36137 df-laut 36138 df-ldil 36253 df-ltrn 36254 df-trl 36308 |
This theorem is referenced by: tendoco2 36917 |
Copyright terms: Public domain | W3C validator |