Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco4 Structured version   Visualization version   GIF version

Theorem ltrnco4 38007
Description: Rearrange a composition of 4 translations, analogous to an4 655. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnco4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐷𝐸) ∘ (𝐹𝐺)) = ((𝐷𝐹) ∘ (𝐸𝐺)))

Proof of Theorem ltrnco4
StepHypRef Expression
1 ltrncom.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 ltrncom.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrncom 38006 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐸𝐹) = (𝐹𝐸))
43coeq1d 5720 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐸𝐹) ∘ 𝐺) = ((𝐹𝐸) ∘ 𝐺))
5 coass 6107 . . . 4 ((𝐸𝐹) ∘ 𝐺) = (𝐸 ∘ (𝐹𝐺))
6 coass 6107 . . . 4 ((𝐹𝐸) ∘ 𝐺) = (𝐹 ∘ (𝐸𝐺))
74, 5, 63eqtr3g 2882 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐸 ∘ (𝐹𝐺)) = (𝐹 ∘ (𝐸𝐺)))
87coeq2d 5721 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → (𝐷 ∘ (𝐸 ∘ (𝐹𝐺))) = (𝐷 ∘ (𝐹 ∘ (𝐸𝐺))))
9 coass 6107 . 2 ((𝐷𝐸) ∘ (𝐹𝐺)) = (𝐷 ∘ (𝐸 ∘ (𝐹𝐺)))
10 coass 6107 . 2 ((𝐷𝐹) ∘ (𝐸𝐺)) = (𝐷 ∘ (𝐹 ∘ (𝐸𝐺)))
118, 9, 103eqtr4g 2884 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐸𝑇𝐹𝑇) → ((𝐷𝐸) ∘ (𝐹𝐺)) = ((𝐷𝐹) ∘ (𝐸𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  ccom 5547  cfv 6345  HLchlt 36618  LHypclh 37252  LTrncltrn 37369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-riotaBAD 36221
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-undef 7937  df-map 8406  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36444  df-ol 36446  df-oml 36447  df-covers 36534  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619  df-llines 36766  df-lplanes 36767  df-lvols 36768  df-lines 36769  df-psubsp 36771  df-pmap 36772  df-padd 37064  df-lhyp 37256  df-laut 37257  df-ldil 37372  df-ltrn 37373  df-trl 37427
This theorem is referenced by:  tendoco2  38036
  Copyright terms: Public domain W3C validator