MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volss Structured version   Visualization version   GIF version

Theorem volss 25050
Description: The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017.)
Assertion
Ref Expression
volss ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → (vol‘𝐴) ≤ (vol‘𝐵))

Proof of Theorem volss
StepHypRef Expression
1 simp3 1139 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → 𝐴𝐵)
2 mblss 25048 . . . 4 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
323ad2ant2 1135 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → 𝐵 ⊆ ℝ)
4 ovolss 25002 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
51, 3, 4syl2anc 585 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → (vol*‘𝐴) ≤ (vol*‘𝐵))
6 mblvol 25047 . . 3 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
763ad2ant1 1134 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → (vol‘𝐴) = (vol*‘𝐴))
8 mblvol 25047 . . 3 (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵))
983ad2ant2 1135 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → (vol‘𝐵) = (vol*‘𝐵))
105, 7, 93brtr4d 5181 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴𝐵) → (vol‘𝐴) ≤ (vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wss 3949   class class class wbr 5149  dom cdm 5677  cfv 6544  cr 11109  cle 11249  vol*covol 24979  volcvol 24980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-icc 13331  df-fz 13485  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-ovol 24981  df-vol 24982
This theorem is referenced by:  voliune  33227  volfiniune  33228  fourierdlem87  44909  voliunsge0lem  45188  hsphoidmvle2  45301  hsphoidmvle  45302  hoidmv1lelem1  45307  hoidmv1lelem2  45308  hoidmv1lelem3  45309  hoidifhspdmvle  45336
  Copyright terms: Public domain W3C validator