![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvol | Structured version Visualization version GIF version |
Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvol.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvol.b | ⊢ (𝜑 → 𝐵 ∈ dom vol) |
Ref | Expression |
---|---|
vonvol | ⊢ (𝜑 → ((voln‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvol.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vonvol.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom vol) | |
3 | mblss 25411 | . . . 4 ⊢ (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
5 | 1, 4 | ovnovol 45928 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) |
6 | snfi 9043 | . . . 4 ⊢ {𝐴} ∈ Fin | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ Fin) |
8 | 1, 4 | vonvolmbl 45930 | . . . 4 ⊢ (𝜑 → ((𝐵 ↑m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol)) |
9 | 2, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐵 ↑m {𝐴}) ∈ dom (voln‘{𝐴})) |
10 | 7, 9 | mblvon 45908 | . 2 ⊢ (𝜑 → ((voln‘{𝐴})‘(𝐵 ↑m {𝐴})) = ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴}))) |
11 | mblvol 25410 | . . 3 ⊢ (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵)) | |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝜑 → (vol‘𝐵) = (vol*‘𝐵)) |
13 | 5, 10, 12 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((voln‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 {csn 4623 dom cdm 5669 ‘cfv 6536 (class class class)co 7404 ↑m cmap 8819 Fincfn 8938 ℝcr 11108 vol*covol 25342 volcvol 25343 voln*covoln 45805 volncvoln 45807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-ac2 10457 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-disj 5107 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-acn 9936 df-ac 10110 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-prod 15854 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-rest 17375 df-0g 17394 df-topgen 17396 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-subg 19048 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-dvr 20301 df-drng 20587 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-cnfld 21237 df-top 22747 df-topon 22764 df-bases 22800 df-cmp 23242 df-ovol 25344 df-vol 25345 df-sumge0 45632 df-ome 45759 df-caragen 45761 df-ovoln 45806 df-voln 45808 |
This theorem is referenced by: vonvol2 45933 |
Copyright terms: Public domain | W3C validator |