| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > volicc | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| volicc | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccmbl 25494 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | |
| 2 | mblvol 25458 | . . . 4 ⊢ ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
| 5 | ovolicc 25451 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | |
| 6 | 4, 5 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 dom cdm 5646 ‘cfv 6519 (class class class)co 7395 ℝcr 11093 ≤ cle 11235 − cmin 11431 [,]cicc 13335 vol*covol 25390 volcvol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7719 ax-inf2 9620 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7352 df-ov 7398 df-oprab 7399 df-mpo 7400 df-of 7661 df-om 7852 df-1st 7978 df-2nd 7979 df-frecs 8270 df-wrecs 8301 df-recs 8350 df-rdg 8388 df-1o 8444 df-2o 8445 df-er 8683 df-map 8813 df-pm 8814 df-en 8931 df-dom 8932 df-sdom 8933 df-fin 8934 df-fi 9388 df-sup 9419 df-inf 9420 df-oi 9489 df-dju 9880 df-card 9918 df-pnf 11236 df-mnf 11237 df-xr 11238 df-ltxr 11239 df-le 11240 df-sub 11433 df-neg 11434 df-div 11862 df-nn 12208 df-2 12270 df-3 12271 df-n0 12469 df-z 12556 df-uz 12820 df-q 12934 df-rp 12978 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13336 df-ico 13338 df-icc 13339 df-fz 13495 df-fzo 13642 df-fl 13780 df-seq 13993 df-exp 14053 df-hash 14322 df-cj 15091 df-re 15092 df-im 15093 df-sqrt 15227 df-abs 15228 df-clim 15480 df-rlim 15481 df-sum 15679 df-rest 17411 df-topgen 17432 df-psmet 21282 df-xmet 21283 df-met 21284 df-bl 21285 df-mopn 21286 df-top 22807 df-topon 22824 df-bases 22859 df-cmp 23300 df-ovol 25392 df-vol 25393 |
| This theorem is referenced by: voliccico 46011 |
| Copyright terms: Public domain | W3C validator |