MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mblss Structured version   Visualization version   GIF version

Theorem mblss 25585
Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
mblss (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)

Proof of Theorem mblss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbl 25580 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
21simplbi 497 1 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-ovol 25518  df-vol 25519
This theorem is referenced by:  volss  25587  nulmbl2  25590  unmbl  25591  shftmbl  25592  unidmvol  25595  inmbl  25596  difmbl  25597  volun  25599  volinun  25600  volfiniun  25601  voliunlem2  25605  voliunlem3  25606  volsup  25610  volsup2  25659  volcn  25660  vitalilem4  25665  vitalilem5  25666  vitali  25667  ismbf  25682  ismbfcn  25683  mbfconst  25687  mbfid  25689  cncombf  25712  cnmbf  25713  i1fima2  25733  i1fd  25735  itg1ge0  25740  i1f1lem  25743  itg11  25745  i1fadd  25749  i1fmul  25750  itg1addlem2  25751  itg1addlem5  25755  i1fres  25760  itg1ge0a  25766  itg1climres  25769  mbfi1fseqlem4  25773  mbfi1flim  25778  mbfmullem2  25779  itg2const2  25796  itg2splitlem  25803  itg2split  25804  itg2gt0  25815  itg2cnlem2  25817  ibladdlem  25875  itgaddlem1  25878  iblabslem  25883  itggt0  25899  itgcn  25900  ftc1lem4  26100  itgulm  26469  areaf  27022  dmvlsiga  34093  volsupnfl  37625  cnambfre  37628  itg2addnclem  37631  ibladdnclem  37636  itgaddnclem1  37638  iblabsnclem  37643  ftc1cnnclem  37651  volge0  45882  dmvolss  45906  vonvol  46583
  Copyright terms: Public domain W3C validator