MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mblss Structured version   Visualization version   GIF version

Theorem mblss 25382
Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
mblss (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)

Proof of Theorem mblss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbl 25377 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
21simplbi 497 1 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3053  cdif 3937  cin 3939  wss 3940  𝒫 cpw 4594  dom cdm 5666  cfv 6533  (class class class)co 7401  cr 11105   + caddc 11109  vol*covol 25313  volcvol 25314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ico 13327  df-icc 13328  df-fz 13482  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-ovol 25315  df-vol 25316
This theorem is referenced by:  volss  25384  nulmbl2  25387  unmbl  25388  shftmbl  25389  unidmvol  25392  inmbl  25393  difmbl  25394  volun  25396  volinun  25397  volfiniun  25398  voliunlem2  25402  voliunlem3  25403  volsup  25407  volsup2  25456  volcn  25457  vitalilem4  25462  vitalilem5  25463  vitali  25464  ismbf  25479  ismbfcn  25480  mbfconst  25484  mbfid  25486  cncombf  25509  cnmbf  25510  i1fima2  25530  i1fd  25532  itg1ge0  25537  i1f1lem  25540  itg11  25542  i1fadd  25546  i1fmul  25547  itg1addlem2  25548  itg1addlem5  25552  i1fres  25557  itg1ge0a  25563  itg1climres  25566  mbfi1fseqlem4  25570  mbfi1flim  25575  mbfmullem2  25576  itg2const2  25593  itg2splitlem  25600  itg2split  25601  itg2gt0  25612  itg2cnlem2  25614  ibladdlem  25671  itgaddlem1  25674  iblabslem  25679  itggt0  25695  itgcn  25696  ftc1lem4  25896  itgulm  26261  areaf  26809  dmvlsiga  33616  volsupnfl  37023  cnambfre  37026  itg2addnclem  37029  ibladdnclem  37034  itgaddnclem1  37036  iblabsnclem  37041  ftc1cnnclem  37049  volge0  45162  dmvolss  45186  vonvol  45863
  Copyright terms: Public domain W3C validator