![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblss | Structured version Visualization version GIF version |
Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblss | ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbl 25574 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 dom cdm 5688 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 + caddc 11155 vol*covol 25510 volcvol 25511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-ico 13389 df-icc 13390 df-fz 13544 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-ovol 25512 df-vol 25513 |
This theorem is referenced by: volss 25581 nulmbl2 25584 unmbl 25585 shftmbl 25586 unidmvol 25589 inmbl 25590 difmbl 25591 volun 25593 volinun 25594 volfiniun 25595 voliunlem2 25599 voliunlem3 25600 volsup 25604 volsup2 25653 volcn 25654 vitalilem4 25659 vitalilem5 25660 vitali 25661 ismbf 25676 ismbfcn 25677 mbfconst 25681 mbfid 25683 cncombf 25706 cnmbf 25707 i1fima2 25727 i1fd 25729 itg1ge0 25734 i1f1lem 25737 itg11 25739 i1fadd 25743 i1fmul 25744 itg1addlem2 25745 itg1addlem5 25749 i1fres 25754 itg1ge0a 25760 itg1climres 25763 mbfi1fseqlem4 25767 mbfi1flim 25772 mbfmullem2 25773 itg2const2 25790 itg2splitlem 25797 itg2split 25798 itg2gt0 25809 itg2cnlem2 25811 ibladdlem 25869 itgaddlem1 25872 iblabslem 25877 itggt0 25893 itgcn 25894 ftc1lem4 26094 itgulm 26465 areaf 27018 dmvlsiga 34109 volsupnfl 37651 cnambfre 37654 itg2addnclem 37657 ibladdnclem 37662 itgaddnclem1 37664 iblabsnclem 37669 ftc1cnnclem 37677 volge0 45916 dmvolss 45940 vonvol 46617 |
Copyright terms: Public domain | W3C validator |