| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblss | Structured version Visualization version GIF version | ||
| Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblss | ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbl 25479 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 + caddc 11132 vol*covol 25415 volcvol 25416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-ovol 25417 df-vol 25418 |
| This theorem is referenced by: volss 25486 nulmbl2 25489 unmbl 25490 shftmbl 25491 unidmvol 25494 inmbl 25495 difmbl 25496 volun 25498 volinun 25499 volfiniun 25500 voliunlem2 25504 voliunlem3 25505 volsup 25509 volsup2 25558 volcn 25559 vitalilem4 25564 vitalilem5 25565 vitali 25566 ismbf 25581 ismbfcn 25582 mbfconst 25586 mbfid 25588 cncombf 25611 cnmbf 25612 i1fima2 25632 i1fd 25634 itg1ge0 25639 i1f1lem 25642 itg11 25644 i1fadd 25648 i1fmul 25649 itg1addlem2 25650 itg1addlem5 25653 i1fres 25658 itg1ge0a 25664 itg1climres 25667 mbfi1fseqlem4 25671 mbfi1flim 25676 mbfmullem2 25677 itg2const2 25694 itg2splitlem 25701 itg2split 25702 itg2gt0 25713 itg2cnlem2 25715 ibladdlem 25773 itgaddlem1 25776 iblabslem 25781 itggt0 25797 itgcn 25798 ftc1lem4 25998 itgulm 26369 areaf 26923 dmvlsiga 34160 volsupnfl 37689 cnambfre 37692 itg2addnclem 37695 ibladdnclem 37700 itgaddnclem1 37702 iblabsnclem 37707 ftc1cnnclem 37715 volge0 45990 dmvolss 46014 vonvol 46691 |
| Copyright terms: Public domain | W3C validator |