![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblss | Structured version Visualization version GIF version |
Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblss | ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbl 25377 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∖ cdif 3937 ∩ cin 3939 ⊆ wss 3940 𝒫 cpw 4594 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 ℝcr 11105 + caddc 11109 vol*covol 25313 volcvol 25314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ico 13327 df-icc 13328 df-fz 13482 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-ovol 25315 df-vol 25316 |
This theorem is referenced by: volss 25384 nulmbl2 25387 unmbl 25388 shftmbl 25389 unidmvol 25392 inmbl 25393 difmbl 25394 volun 25396 volinun 25397 volfiniun 25398 voliunlem2 25402 voliunlem3 25403 volsup 25407 volsup2 25456 volcn 25457 vitalilem4 25462 vitalilem5 25463 vitali 25464 ismbf 25479 ismbfcn 25480 mbfconst 25484 mbfid 25486 cncombf 25509 cnmbf 25510 i1fima2 25530 i1fd 25532 itg1ge0 25537 i1f1lem 25540 itg11 25542 i1fadd 25546 i1fmul 25547 itg1addlem2 25548 itg1addlem5 25552 i1fres 25557 itg1ge0a 25563 itg1climres 25566 mbfi1fseqlem4 25570 mbfi1flim 25575 mbfmullem2 25576 itg2const2 25593 itg2splitlem 25600 itg2split 25601 itg2gt0 25612 itg2cnlem2 25614 ibladdlem 25671 itgaddlem1 25674 iblabslem 25679 itggt0 25695 itgcn 25696 ftc1lem4 25896 itgulm 26261 areaf 26809 dmvlsiga 33616 volsupnfl 37023 cnambfre 37026 itg2addnclem 37029 ibladdnclem 37034 itgaddnclem1 37036 iblabsnclem 37041 ftc1cnnclem 37049 volge0 45162 dmvolss 45186 vonvol 45863 |
Copyright terms: Public domain | W3C validator |