MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmpladd Structured version   Visualization version   GIF version

Theorem ressmpladd 20706
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmpladd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem ressmpladd
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2824 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2824 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 20679 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3949 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3949 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 615 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2824 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2824 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsradd 20663 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 595 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
153fvexi 6677 . . . 4 𝐵 ∈ V
161, 2, 3mplval2 20678 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
17 eqid 2824 . . . . 5 (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻))
1816, 17ressplusg 16614 . . . 4 (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈))
1915, 18ax-mp 5 . . 3 (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈)
2019oveqi 7164 . 2 (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g𝑈)𝑌)
21 fvex 6676 . . . . 5 (Base‘𝑆) ∈ V
22 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
23 eqid 2824 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2422, 9, 23mplval2 20678 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
25 eqid 2824 . . . . . 6 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
2624, 25ressplusg 16614 . . . . 5 ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆))
2721, 26ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆)
28 fvex 6676 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
2911, 25ressplusg 16614 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3028, 29ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
31 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
32 eqid 2824 . . . . . 6 (+g𝑆) = (+g𝑆)
3331, 32ressplusg 16614 . . . . 5 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
3415, 33ax-mp 5 . . . 4 (+g𝑆) = (+g𝑃)
3527, 30, 343eqtr3i 2855 . . 3 (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g𝑃)
3635oveqi 7164 . 2 (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g𝑃)𝑌)
3714, 20, 363eqtr3g 2882 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  cfv 6345  (class class class)co 7151  Basecbs 16485  s cress 16486  +gcplusg 16567  SubRingcsubrg 19533   mPwSer cmps 20598   mPoly cmpl 20600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-subg 18278  df-ring 19301  df-subrg 19535  df-psr 20603  df-mpl 20605
This theorem is referenced by:  ressply1add  20868
  Copyright terms: Public domain W3C validator