Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressmpladd | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressmpladd | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.u | . . . . . 6 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
2 | eqid 2738 | . . . . . 6 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
3 | ressmpl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑈) | |
4 | eqid 2738 | . . . . . 6 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
5 | 1, 2, 3, 4 | mplbasss 21113 | . . . . 5 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
6 | 5 | sseli 3913 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
7 | 5 | sseli 3913 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
8 | 6, 7 | anim12i 612 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) |
9 | eqid 2738 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
10 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
11 | eqid 2738 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
12 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
13 | 9, 10, 2, 4, 11, 12 | resspsradd 21095 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
14 | 8, 13 | sylan2 592 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
15 | 3 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
16 | 1, 2, 3 | mplval2 21112 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
17 | eqid 2738 | . . . . 5 ⊢ (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻)) | |
18 | 16, 17 | ressplusg 16926 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g‘𝑈)) |
19 | 15, 18 | ax-mp 5 | . . 3 ⊢ (+g‘(𝐼 mPwSer 𝐻)) = (+g‘𝑈) |
20 | 19 | oveqi 7268 | . 2 ⊢ (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘𝑈)𝑌) |
21 | fvex 6769 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
22 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
23 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
24 | 22, 9, 23 | mplval2 21112 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
25 | eqid 2738 | . . . . . 6 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅)) | |
26 | 24, 25 | ressplusg 16926 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑆)) |
27 | 21, 26 | ax-mp 5 | . . . 4 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑆) |
28 | fvex 6769 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
29 | 11, 25 | ressplusg 16926 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
30 | 28, 29 | ax-mp 5 | . . . 4 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
31 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
32 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
33 | 31, 32 | ressplusg 16926 | . . . . 5 ⊢ (𝐵 ∈ V → (+g‘𝑆) = (+g‘𝑃)) |
34 | 15, 33 | ax-mp 5 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑃) |
35 | 27, 30, 34 | 3eqtr3i 2774 | . . 3 ⊢ (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g‘𝑃) |
36 | 35 | oveqi 7268 | . 2 ⊢ (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g‘𝑃)𝑌) |
37 | 14, 20, 36 | 3eqtr3g 2802 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 SubRingcsubrg 19935 mPwSer cmps 21017 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-subg 18667 df-ring 19700 df-subrg 19937 df-psr 21022 df-mpl 21024 |
This theorem is referenced by: ressply1add 21311 |
Copyright terms: Public domain | W3C validator |