| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmpladd | Structured version Visualization version GIF version | ||
| Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
| ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
| ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
| ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| ressmpladd | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.u | . . . . . 6 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
| 3 | ressmpl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑈) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
| 5 | 1, 2, 3, 4 | mplbasss 21935 | . . . . 5 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
| 6 | 5 | sseli 3930 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
| 7 | 5 | sseli 3930 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
| 8 | 6, 7 | anim12i 613 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) |
| 9 | eqid 2731 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 10 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 11 | eqid 2731 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
| 12 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 13 | 9, 10, 2, 4, 11, 12 | resspsradd 21913 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
| 14 | 8, 13 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
| 15 | 3 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 16 | 1, 2, 3 | mplval2 21934 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
| 17 | eqid 2731 | . . . . 5 ⊢ (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻)) | |
| 18 | 16, 17 | ressplusg 17195 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g‘𝑈)) |
| 19 | 15, 18 | ax-mp 5 | . . 3 ⊢ (+g‘(𝐼 mPwSer 𝐻)) = (+g‘𝑈) |
| 20 | 19 | oveqi 7359 | . 2 ⊢ (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘𝑈)𝑌) |
| 21 | fvex 6835 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
| 22 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
| 23 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 24 | 22, 9, 23 | mplval2 21934 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
| 25 | eqid 2731 | . . . . . 6 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅)) | |
| 26 | 24, 25 | ressplusg 17195 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑆)) |
| 27 | 21, 26 | ax-mp 5 | . . . 4 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑆) |
| 28 | fvex 6835 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
| 29 | 11, 25 | ressplusg 17195 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
| 30 | 28, 29 | ax-mp 5 | . . . 4 ⊢ (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
| 31 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 32 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 33 | 31, 32 | ressplusg 17195 | . . . . 5 ⊢ (𝐵 ∈ V → (+g‘𝑆) = (+g‘𝑃)) |
| 34 | 15, 33 | ax-mp 5 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑃) |
| 35 | 27, 30, 34 | 3eqtr3i 2762 | . . 3 ⊢ (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g‘𝑃) |
| 36 | 35 | oveqi 7359 | . 2 ⊢ (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g‘𝑃)𝑌) |
| 37 | 14, 20, 36 | 3eqtr3g 2789 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 SubRingcsubrg 20485 mPwSer cmps 21842 mPoly cmpl 21844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-subg 19036 df-ring 20154 df-subrg 20486 df-psr 21847 df-mpl 21849 |
| This theorem is referenced by: ressply1add 22143 |
| Copyright terms: Public domain | W3C validator |