MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmpladd Structured version   Visualization version   GIF version

Theorem ressmpladd 19865
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmpladd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem ressmpladd
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2778 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2778 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 19840 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3817 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3817 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 606 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2778 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2778 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsradd 19824 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 586 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
153fvexi 6462 . . . 4 𝐵 ∈ V
161, 2, 3mplval2 19839 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
17 eqid 2778 . . . . 5 (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻))
1816, 17ressplusg 16396 . . . 4 (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈))
1915, 18ax-mp 5 . . 3 (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈)
2019oveqi 6937 . 2 (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g𝑈)𝑌)
21 fvex 6461 . . . . 5 (Base‘𝑆) ∈ V
22 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
23 eqid 2778 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2422, 9, 23mplval2 19839 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
25 eqid 2778 . . . . . 6 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
2624, 25ressplusg 16396 . . . . 5 ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆))
2721, 26ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆)
28 fvex 6461 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
2911, 25ressplusg 16396 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3028, 29ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
31 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
32 eqid 2778 . . . . . 6 (+g𝑆) = (+g𝑆)
3331, 32ressplusg 16396 . . . . 5 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
3415, 33ax-mp 5 . . . 4 (+g𝑆) = (+g𝑃)
3527, 30, 343eqtr3i 2810 . . 3 (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g𝑃)
3635oveqi 6937 . 2 (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g𝑃)𝑌)
3714, 20, 363eqtr3g 2837 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cfv 6137  (class class class)co 6924  Basecbs 16266  s cress 16267  +gcplusg 16349  SubRingcsubrg 19179   mPwSer cmps 19759   mPoly cmpl 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-tset 16368  df-subg 17986  df-ring 18947  df-subrg 19181  df-psr 19764  df-mpl 19766
This theorem is referenced by:  ressply1add  20007
  Copyright terms: Public domain W3C validator