| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version | ||
| Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2731 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 7 | 5, 6, 3 | psr1bas2 22102 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(1o mPwSer 𝑅)) |
| 8 | 2, 3, 4, 7 | mplbasss 21934 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) |
| 9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | 9, 5 | ply1val 22106 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 11 | 10, 6 | ressbas2 17149 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
| 12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
| 13 | 1, 12 | eqtr4i 2757 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 Basecbs 17120 mPwSer cmps 21841 mPoly cmpl 21843 PwSer1cps1 22087 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-ple 17181 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 |
| This theorem is referenced by: ply1lss 22109 ply1subrg 22110 ply1crng 22111 ply1assa 22112 ply1basf 22115 ply1bascl2 22117 vr1cl 22130 ressply1bas2 22140 ressply1add 22142 ressply1mul 22143 ressply1vsca 22144 subrgply1 22145 ply1baspropd 22155 ply1ring 22160 ply1lmod 22164 ply1mpl0 22169 ply1mpl1 22171 subrg1asclcl 22174 subrgvr1cl 22176 coe1add 22178 coe1tm 22187 ply1coe 22213 evls1rhm 22237 evls1sca 22238 evl1rhm 22247 evl1sca 22249 evl1var 22251 evls1var 22253 mpfpf1 22266 pf1mpf 22267 ply1vscl 22299 mhmcoply1 22300 rhmply1 22301 rhmply1vsca 22303 deg1xrf 26013 deg1cl 26015 deg1nn0cl 26020 deg1ldg 26024 deg1leb 26027 deg1val 26028 deg1vscale 26036 deg1vsca 26037 deg1mulle2 26041 deg1le0 26043 fply1 33521 |
| Copyright terms: Public domain | W3C validator |