![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version |
Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | eqid 2732 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
3 | eqid 2732 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2732 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
5 | ply1val.2 | . . . . 5 ⊢ 𝑆 = (PwSer1‘𝑅) | |
6 | eqid 2732 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | 5, 6, 3 | psr1bas2 21933 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(1o mPwSer 𝑅)) |
8 | 2, 3, 4, 7 | mplbasss 21775 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) |
9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | 9, 5 | ply1val 21937 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
11 | 10, 6 | ressbas2 17186 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
13 | 1, 12 | eqtr4i 2763 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7411 1oc1o 8461 Basecbs 17148 mPwSer cmps 21676 mPoly cmpl 21678 PwSer1cps1 21918 Poly1cpl1 21920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-dec 12682 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-ple 17221 df-psr 21681 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-ply1 21925 |
This theorem is referenced by: ply1lss 21939 ply1subrg 21940 ply1crng 21941 ply1assa 21942 ply1basf 21945 ply1bascl2 21947 vr1cl 21960 ressply1bas2 21970 ressply1add 21972 ressply1mul 21973 ressply1vsca 21974 subrgply1 21975 ply1baspropd 21985 ply1ring 21990 ply1lmod 21994 ply1mpl0 21997 ply1mpl1 21999 subrg1asclcl 22002 subrgvr1cl 22004 coe1add 22006 coe1tm 22015 ply1coe 22040 evls1rhm 22061 evls1sca 22062 evl1rhm 22071 evl1sca 22073 evl1var 22075 evls1var 22077 mpfpf1 22090 pf1mpf 22091 deg1xrf 25823 deg1cl 25825 deg1nn0cl 25830 deg1ldg 25834 deg1leb 25837 deg1val 25838 deg1vscale 25846 deg1vsca 25847 deg1mulle2 25851 deg1le0 25853 fply1 32899 |
Copyright terms: Public domain | W3C validator |