| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version | ||
| Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 7 | 5, 6, 3 | psr1bas2 22072 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(1o mPwSer 𝑅)) |
| 8 | 2, 3, 4, 7 | mplbasss 21904 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) |
| 9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | 9, 5 | ply1val 22076 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 11 | 10, 6 | ressbas2 17149 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
| 12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
| 13 | 1, 12 | eqtr4i 2755 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 Basecbs 17120 mPwSer cmps 21811 mPoly cmpl 21813 PwSer1cps1 22057 Poly1cpl1 22059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-ple 17181 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 |
| This theorem is referenced by: ply1lss 22079 ply1subrg 22080 ply1crng 22081 ply1assa 22082 ply1basf 22085 ply1bascl2 22087 vr1cl 22100 ressply1bas2 22110 ressply1add 22112 ressply1mul 22113 ressply1vsca 22114 subrgply1 22115 ply1baspropd 22125 ply1ring 22130 ply1lmod 22134 ply1mpl0 22139 ply1mpl1 22141 subrg1asclcl 22144 subrgvr1cl 22146 coe1add 22148 coe1tm 22157 ply1coe 22183 evls1rhm 22207 evls1sca 22208 evl1rhm 22217 evl1sca 22219 evl1var 22221 evls1var 22223 mpfpf1 22236 pf1mpf 22237 ply1vscl 22269 mhmcoply1 22270 rhmply1 22271 rhmply1vsca 22273 deg1xrf 25984 deg1cl 25986 deg1nn0cl 25991 deg1ldg 25995 deg1leb 25998 deg1val 25999 deg1vscale 26007 deg1vsca 26008 deg1mulle2 26012 deg1le0 26014 fply1 33494 |
| Copyright terms: Public domain | W3C validator |