Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version |
Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | eqid 2739 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
3 | eqid 2739 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2739 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
5 | ply1val.2 | . . . . 5 ⊢ 𝑆 = (PwSer1‘𝑅) | |
6 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | 5, 6, 3 | psr1bas2 21370 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(1o mPwSer 𝑅)) |
8 | 2, 3, 4, 7 | mplbasss 21212 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) |
9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | 9, 5 | ply1val 21374 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
11 | 10, 6 | ressbas2 16958 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
13 | 1, 12 | eqtr4i 2770 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3888 ‘cfv 6437 (class class class)co 7284 1oc1o 8299 Basecbs 16921 mPwSer cmps 21116 mPoly cmpl 21118 PwSer1cps1 21355 Poly1cpl1 21357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-dec 12447 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-ple 16991 df-psr 21121 df-mpl 21123 df-opsr 21125 df-psr1 21360 df-ply1 21362 |
This theorem is referenced by: ply1lss 21376 ply1subrg 21377 ply1crng 21378 ply1assa 21379 ply1basf 21382 ply1bascl2 21384 vr1cl 21397 ressply1bas2 21408 ressply1add 21410 ressply1mul 21411 ressply1vsca 21412 subrgply1 21413 ply1baspropd 21423 ply1ring 21428 ply1lmod 21432 ply1mpl0 21435 ply1mpl1 21437 subrg1asclcl 21440 subrgvr1cl 21442 coe1add 21444 coe1tm 21453 ply1coe 21476 evls1rhm 21497 evls1sca 21498 evl1rhm 21507 evl1sca 21509 evl1var 21511 evls1var 21513 mpfpf1 21526 pf1mpf 21527 deg1xrf 25255 deg1cl 25257 deg1nn0cl 25262 deg1ldg 25266 deg1leb 25269 deg1val 25270 deg1vscale 25278 deg1vsca 25279 deg1mulle2 25283 deg1le0 25285 fply1 31676 |
Copyright terms: Public domain | W3C validator |