| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version | ||
| Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2735 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | eqid 2735 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 7 | 5, 6, 3 | psr1bas2 22123 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(1o mPwSer 𝑅)) |
| 8 | 2, 3, 4, 7 | mplbasss 21955 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) |
| 9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | 9, 5 | ply1val 22127 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 11 | 10, 6 | ressbas2 17257 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
| 12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
| 13 | 1, 12 | eqtr4i 2761 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 1oc1o 8471 Basecbs 17226 mPwSer cmps 21862 mPoly cmpl 21864 PwSer1cps1 22108 Poly1cpl1 22110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-dec 12707 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-ple 17289 df-psr 21867 df-mpl 21869 df-opsr 21871 df-psr1 22113 df-ply1 22115 |
| This theorem is referenced by: ply1lss 22130 ply1subrg 22131 ply1crng 22132 ply1assa 22133 ply1basf 22136 ply1bascl2 22138 vr1cl 22151 ressply1bas2 22161 ressply1add 22163 ressply1mul 22164 ressply1vsca 22165 subrgply1 22166 ply1baspropd 22176 ply1ring 22181 ply1lmod 22185 ply1mpl0 22190 ply1mpl1 22192 subrg1asclcl 22195 subrgvr1cl 22197 coe1add 22199 coe1tm 22208 ply1coe 22234 evls1rhm 22258 evls1sca 22259 evl1rhm 22268 evl1sca 22270 evl1var 22272 evls1var 22274 mpfpf1 22287 pf1mpf 22288 ply1vscl 22320 mhmcoply1 22321 rhmply1 22322 rhmply1vsca 22324 deg1xrf 26036 deg1cl 26038 deg1nn0cl 26043 deg1ldg 26047 deg1leb 26050 deg1val 26051 deg1vscale 26059 deg1vsca 26060 deg1mulle2 26064 deg1le0 26066 fply1 33517 |
| Copyright terms: Public domain | W3C validator |