![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version |
Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | eqid 2732 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
3 | eqid 2732 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2732 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
5 | ply1val.2 | . . . . 5 ⊢ 𝑆 = (PwSer1‘𝑅) | |
6 | eqid 2732 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | 5, 6, 3 | psr1bas2 21713 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(1o mPwSer 𝑅)) |
8 | 2, 3, 4, 7 | mplbasss 21555 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) |
9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | 9, 5 | ply1val 21717 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
11 | 10, 6 | ressbas2 17181 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
13 | 1, 12 | eqtr4i 2763 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7408 1oc1o 8458 Basecbs 17143 mPwSer cmps 21456 mPoly cmpl 21458 PwSer1cps1 21698 Poly1cpl1 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-dec 12677 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-ple 17216 df-psr 21461 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-ply1 21705 |
This theorem is referenced by: ply1lss 21719 ply1subrg 21720 ply1crng 21721 ply1assa 21722 ply1basf 21725 ply1bascl2 21727 vr1cl 21740 ressply1bas2 21749 ressply1add 21751 ressply1mul 21752 ressply1vsca 21753 subrgply1 21754 ply1baspropd 21764 ply1ring 21769 ply1lmod 21773 ply1mpl0 21776 ply1mpl1 21778 subrg1asclcl 21781 subrgvr1cl 21783 coe1add 21785 coe1tm 21794 ply1coe 21819 evls1rhm 21840 evls1sca 21841 evl1rhm 21850 evl1sca 21852 evl1var 21854 evls1var 21856 mpfpf1 21869 pf1mpf 21870 deg1xrf 25598 deg1cl 25600 deg1nn0cl 25605 deg1ldg 25609 deg1leb 25612 deg1val 25613 deg1vscale 25621 deg1vsca 25622 deg1mulle2 25626 deg1le0 25628 fply1 32632 |
Copyright terms: Public domain | W3C validator |