| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version | ||
| Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 7 | 5, 6, 3 | psr1bas2 22107 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(1o mPwSer 𝑅)) |
| 8 | 2, 3, 4, 7 | mplbasss 21939 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) |
| 9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | 9, 5 | ply1val 22111 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 11 | 10, 6 | ressbas2 17184 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1‘𝑅)) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
| 12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
| 13 | 1, 12 | eqtr4i 2755 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17155 mPwSer cmps 21846 mPoly cmpl 21848 PwSer1cps1 22092 Poly1cpl1 22094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-ple 17216 df-psr 21851 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-ply1 22099 |
| This theorem is referenced by: ply1lss 22114 ply1subrg 22115 ply1crng 22116 ply1assa 22117 ply1basf 22120 ply1bascl2 22122 vr1cl 22135 ressply1bas2 22145 ressply1add 22147 ressply1mul 22148 ressply1vsca 22149 subrgply1 22150 ply1baspropd 22160 ply1ring 22165 ply1lmod 22169 ply1mpl0 22174 ply1mpl1 22176 subrg1asclcl 22179 subrgvr1cl 22181 coe1add 22183 coe1tm 22192 ply1coe 22218 evls1rhm 22242 evls1sca 22243 evl1rhm 22252 evl1sca 22254 evl1var 22256 evls1var 22258 mpfpf1 22271 pf1mpf 22272 ply1vscl 22304 mhmcoply1 22305 rhmply1 22306 rhmply1vsca 22308 deg1xrf 26019 deg1cl 26021 deg1nn0cl 26026 deg1ldg 26030 deg1leb 26033 deg1val 26034 deg1vscale 26042 deg1vsca 26043 deg1mulle2 26047 deg1le0 26049 fply1 33520 |
| Copyright terms: Public domain | W3C validator |