![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1bas | Structured version Visualization version GIF version |
Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
ply1bas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1bas | ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | eqid 2724 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
3 | eqid 2724 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2724 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
5 | ply1val.2 | . . . . 5 ⊢ 𝑆 = (PwSer1‘𝑅) | |
6 | eqid 2724 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | 5, 6, 3 | psr1bas2 22031 | . . . 4 ⊢ (Base‘𝑆) = (Base‘(1o mPwSer 𝑅)) |
8 | 2, 3, 4, 7 | mplbasss 21865 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) |
9 | ply1val.1 | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | 9, 5 | ply1val 22035 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
11 | 10, 6 | ressbas2 17180 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘𝑆) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)) |
12 | 8, 11 | ax-mp 5 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘𝑃) |
13 | 1, 12 | eqtr4i 2755 | 1 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3940 ‘cfv 6533 (class class class)co 7401 1oc1o 8454 Basecbs 17142 mPwSer cmps 21765 mPoly cmpl 21767 PwSer1cps1 22016 Poly1cpl1 22018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-dec 12674 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-ple 17215 df-psr 21770 df-mpl 21772 df-opsr 21774 df-psr1 22021 df-ply1 22023 |
This theorem is referenced by: ply1lss 22037 ply1subrg 22038 ply1crng 22039 ply1assa 22040 ply1basf 22043 ply1bascl2 22045 vr1cl 22058 ressply1bas2 22068 ressply1add 22070 ressply1mul 22071 ressply1vsca 22072 subrgply1 22073 ply1baspropd 22083 ply1ring 22088 ply1lmod 22092 ply1mpl0 22095 ply1mpl1 22097 subrg1asclcl 22100 subrgvr1cl 22102 coe1add 22104 coe1tm 22113 ply1coe 22138 evls1rhm 22162 evls1sca 22163 evl1rhm 22172 evl1sca 22174 evl1var 22176 evls1var 22178 mpfpf1 22191 pf1mpf 22192 deg1xrf 25938 deg1cl 25940 deg1nn0cl 25945 deg1ldg 25949 deg1leb 25952 deg1val 25953 deg1vscale 25961 deg1vsca 25962 deg1mulle2 25966 deg1le0 25968 fply1 33071 |
Copyright terms: Public domain | W3C validator |