MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1bas Structured version   Visualization version   GIF version

Theorem ply1bas 22217
Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1bas.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
ply1bas 𝑈 = (Base‘(1o mPoly 𝑅))

Proof of Theorem ply1bas
StepHypRef Expression
1 ply1bas.u . 2 𝑈 = (Base‘𝑃)
2 eqid 2740 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
3 eqid 2740 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
4 eqid 2740 . . . 4 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
5 eqid 2740 . . . . 5 (PwSer1𝑅) = (PwSer1𝑅)
6 eqid 2740 . . . . 5 (Base‘(PwSer1𝑅)) = (Base‘(PwSer1𝑅))
75, 6, 3psr1bas2 22212 . . . 4 (Base‘(PwSer1𝑅)) = (Base‘(1o mPwSer 𝑅))
82, 3, 4, 7mplbasss 22040 . . 3 (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1𝑅))
9 ply1val.1 . . . . 5 𝑃 = (Poly1𝑅)
109, 5ply1val 22216 . . . 4 𝑃 = ((PwSer1𝑅) ↾s (Base‘(1o mPoly 𝑅)))
1110, 6ressbas2 17296 . . 3 ((Base‘(1o mPoly 𝑅)) ⊆ (Base‘(PwSer1𝑅)) → (Base‘(1o mPoly 𝑅)) = (Base‘𝑃))
128, 11ax-mp 5 . 2 (Base‘(1o mPoly 𝑅)) = (Base‘𝑃)
131, 12eqtr4i 2771 1 𝑈 = (Base‘(1o mPoly 𝑅))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wss 3976  cfv 6573  (class class class)co 7448  1oc1o 8515  Basecbs 17258   mPwSer cmps 21947   mPoly cmpl 21949  PwSer1cps1 22197  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-ple 17331  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204
This theorem is referenced by:  ply1lss  22219  ply1subrg  22220  ply1crng  22221  ply1assa  22222  ply1basf  22225  ply1bascl2  22227  vr1cl  22240  ressply1bas2  22250  ressply1add  22252  ressply1mul  22253  ressply1vsca  22254  subrgply1  22255  ply1baspropd  22265  ply1ring  22270  ply1lmod  22274  ply1mpl0  22279  ply1mpl1  22281  subrg1asclcl  22284  subrgvr1cl  22286  coe1add  22288  coe1tm  22297  ply1coe  22323  evls1rhm  22347  evls1sca  22348  evl1rhm  22357  evl1sca  22359  evl1var  22361  evls1var  22363  mpfpf1  22376  pf1mpf  22377  ply1vscl  22409  mhmcoply1  22410  rhmply1  22411  rhmply1vsca  22413  deg1xrf  26140  deg1cl  26142  deg1nn0cl  26147  deg1ldg  26151  deg1leb  26154  deg1val  26155  deg1vscale  26163  deg1vsca  26164  deg1mulle2  26168  deg1le0  26170  fply1  33549
  Copyright terms: Public domain W3C validator