MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpladd Structured version   Visualization version   GIF version

Theorem mpladd 19926
Description: The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mpladd.p 𝑃 = (𝐼 mPoly 𝑅)
mpladd.b 𝐵 = (Base‘𝑃)
mpladd.a + = (+g𝑅)
mpladd.g = (+g𝑃)
mpladd.x (𝜑𝑋𝐵)
mpladd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
mpladd (𝜑 → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))

Proof of Theorem mpladd
StepHypRef Expression
1 eqid 2772 . 2 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2772 . 2 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3 mpladd.a . 2 + = (+g𝑅)
4 mpladd.g . . 3 = (+g𝑃)
5 mpladd.b . . . . 5 𝐵 = (Base‘𝑃)
65fvexi 6507 . . . 4 𝐵 ∈ V
7 mpladd.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
87, 1, 5mplval2 19915 . . . . 5 𝑃 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
9 eqid 2772 . . . . 5 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
108, 9ressplusg 16458 . . . 4 (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑃))
116, 10ax-mp 5 . . 3 (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑃)
124, 11eqtr4i 2799 . 2 = (+g‘(𝐼 mPwSer 𝑅))
137, 1, 5, 2mplbasss 19916 . . 3 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
14 mpladd.x . . 3 (𝜑𝑋𝐵)
1513, 14sseldi 3852 . 2 (𝜑𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)))
16 mpladd.y . . 3 (𝜑𝑌𝐵)
1713, 16sseldi 3852 . 2 (𝜑𝑌 ∈ (Base‘(𝐼 mPwSer 𝑅)))
181, 2, 3, 12, 15, 17psradd 19866 1 (𝜑 → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  Vcvv 3409  cfv 6182  (class class class)co 6970  𝑓 cof 7219  Basecbs 16329  +gcplusg 16411   mPwSer cmps 19835   mPoly cmpl 19837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-tset 16430  df-psr 19840  df-mpl 19842
This theorem is referenced by:  mplcoe1  19949  evlslem1  19998  mhpaddcl  20034  coe1add  20125  mdegaddle  24361
  Copyright terms: Public domain W3C validator