Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplvsca | Structured version Visualization version GIF version |
Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
mplvsca.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplvsca.n | ⊢ ∙ = ( ·𝑠 ‘𝑃) |
mplvsca.k | ⊢ 𝐾 = (Base‘𝑅) |
mplvsca.b | ⊢ 𝐵 = (Base‘𝑃) |
mplvsca.m | ⊢ · = (.r‘𝑅) |
mplvsca.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mplvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
mplvsca.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
mplvsca | ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | mplvsca.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mplvsca.n | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑃) | |
4 | 2, 1, 3 | mplvsca2 21006 | . 2 ⊢ ∙ = ( ·𝑠 ‘(𝐼 mPwSer 𝑅)) |
5 | mplvsca.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
6 | eqid 2739 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
7 | mplvsca.m | . 2 ⊢ · = (.r‘𝑅) | |
8 | mplvsca.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
9 | mplvsca.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | mplvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
11 | 2, 1, 10, 6 | mplbasss 20991 | . . 3 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
12 | mplvsca.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | 11, 12 | sselid 3915 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
14 | 1, 4, 5, 6, 7, 8, 9, 13 | psrvsca 20948 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 {crab 3068 {csn 4558 × cxp 5567 ◡ccnv 5568 “ cima 5572 ‘cfv 6401 (class class class)co 7235 ∘f cof 7489 ↑m cmap 8532 Fincfn 8650 ℕcn 11860 ℕ0cn0 12120 Basecbs 16793 .rcmulr 16836 ·𝑠 cvsca 16839 mPwSer cmps 20895 mPoly cmpl 20897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-om 7667 df-1st 7783 df-2nd 7784 df-supp 7928 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-fsupp 9016 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-z 12207 df-uz 12469 df-fz 13126 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-sca 16851 df-vsca 16852 df-tset 16854 df-psr 20900 df-mpl 20902 |
This theorem is referenced by: mplvscaval 21008 mplcoe1 21026 mplmon2 21051 mdegvsca 25006 mhphf 40044 |
Copyright terms: Public domain | W3C validator |