MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplvsca Structured version   Visualization version   GIF version

Theorem mplvsca 21007
Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplvsca.p 𝑃 = (𝐼 mPoly 𝑅)
mplvsca.n = ( ·𝑠𝑃)
mplvsca.k 𝐾 = (Base‘𝑅)
mplvsca.b 𝐵 = (Base‘𝑃)
mplvsca.m · = (.r𝑅)
mplvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mplvsca.x (𝜑𝑋𝐾)
mplvsca.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mplvsca (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑃()   𝑅()   ()   · ()   𝐹()   𝐾()   𝑋()

Proof of Theorem mplvsca
StepHypRef Expression
1 eqid 2739 . 2 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplvsca.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mplvsca.n . . 3 = ( ·𝑠𝑃)
42, 1, 3mplvsca2 21006 . 2 = ( ·𝑠 ‘(𝐼 mPwSer 𝑅))
5 mplvsca.k . 2 𝐾 = (Base‘𝑅)
6 eqid 2739 . 2 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
7 mplvsca.m . 2 · = (.r𝑅)
8 mplvsca.d . 2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
9 mplvsca.x . 2 (𝜑𝑋𝐾)
10 mplvsca.b . . . 4 𝐵 = (Base‘𝑃)
112, 1, 10, 6mplbasss 20991 . . 3 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
12 mplvsca.f . . 3 (𝜑𝐹𝐵)
1311, 12sselid 3915 . 2 (𝜑𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)))
141, 4, 5, 6, 7, 8, 9, 13psrvsca 20948 1 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {crab 3068  {csn 4558   × cxp 5567  ccnv 5568  cima 5572  cfv 6401  (class class class)co 7235  f cof 7489  m cmap 8532  Fincfn 8650  cn 11860  0cn0 12120  Basecbs 16793  .rcmulr 16836   ·𝑠 cvsca 16839   mPwSer cmps 20895   mPoly cmpl 20897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-of 7491  df-om 7667  df-1st 7783  df-2nd 7784  df-supp 7928  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-fsupp 9016  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-9 11930  df-n0 12121  df-z 12207  df-uz 12469  df-fz 13126  df-struct 16733  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-mulr 16849  df-sca 16851  df-vsca 16852  df-tset 16854  df-psr 20900  df-mpl 20902
This theorem is referenced by:  mplvscaval  21008  mplcoe1  21026  mplmon2  21051  mdegvsca  25006  mhphf  40044
  Copyright terms: Public domain W3C validator