Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressmplmul | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressmplmul | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.u | . . . . . 6 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
2 | eqid 2736 | . . . . . 6 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
3 | ressmpl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑈) | |
4 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
5 | 1, 2, 3, 4 | mplbasss 21283 | . . . . 5 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
6 | 5 | sseli 3926 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
7 | 5 | sseli 3926 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
8 | 6, 7 | anim12i 613 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) |
9 | eqid 2736 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
10 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
11 | eqid 2736 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
12 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
13 | 9, 10, 2, 4, 11, 12 | resspsrmul 21266 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
14 | 8, 13 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
15 | 3 | fvexi 6825 | . . . 4 ⊢ 𝐵 ∈ V |
16 | 1, 2, 3 | mplval2 21282 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
17 | eqid 2736 | . . . . 5 ⊢ (.r‘(𝐼 mPwSer 𝐻)) = (.r‘(𝐼 mPwSer 𝐻)) | |
18 | 16, 17 | ressmulr 17091 | . . . 4 ⊢ (𝐵 ∈ V → (.r‘(𝐼 mPwSer 𝐻)) = (.r‘𝑈)) |
19 | 15, 18 | ax-mp 5 | . . 3 ⊢ (.r‘(𝐼 mPwSer 𝐻)) = (.r‘𝑈) |
20 | 19 | oveqi 7329 | . 2 ⊢ (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘𝑈)𝑌) |
21 | fvex 6824 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
22 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
23 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
24 | 22, 9, 23 | mplval2 21282 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
25 | eqid 2736 | . . . . . 6 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘(𝐼 mPwSer 𝑅)) | |
26 | 24, 25 | ressmulr 17091 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑆)) |
27 | 21, 26 | ax-mp 5 | . . . 4 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑆) |
28 | fvex 6824 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
29 | 11, 25 | ressmulr 17091 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
30 | 28, 29 | ax-mp 5 | . . . 4 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
31 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
32 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
33 | 31, 32 | ressmulr 17091 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘𝑆) = (.r‘𝑃)) |
34 | 15, 33 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑃) |
35 | 27, 30, 34 | 3eqtr3i 2772 | . . 3 ⊢ (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (.r‘𝑃) |
36 | 35 | oveqi 7329 | . 2 ⊢ (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(.r‘𝑃)𝑌) |
37 | 14, 20, 36 | 3eqtr3g 2799 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 ↾s cress 17015 .rcmulr 17037 SubRingcsubrg 20099 mPwSer cmps 21187 mPoly cmpl 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-ofr 7575 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-seq 13801 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-tset 17055 df-0g 17226 df-gsum 17227 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-grp 18653 df-minusg 18654 df-subg 18825 df-mgp 19793 df-ring 19857 df-subrg 20101 df-psr 21192 df-mpl 21194 |
This theorem is referenced by: ressply1mul 21482 |
Copyright terms: Public domain | W3C validator |