MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplmul Structured version   Visualization version   GIF version

Theorem ressmplmul 19855
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmplmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem ressmplmul
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2777 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2777 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 19829 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3816 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3816 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 606 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2777 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2777 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsrmul 19814 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 586 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
153fvexi 6460 . . . 4 𝐵 ∈ V
161, 2, 3mplval2 19828 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
17 eqid 2777 . . . . 5 (.r‘(𝐼 mPwSer 𝐻)) = (.r‘(𝐼 mPwSer 𝐻))
1816, 17ressmulr 16398 . . . 4 (𝐵 ∈ V → (.r‘(𝐼 mPwSer 𝐻)) = (.r𝑈))
1915, 18ax-mp 5 . . 3 (.r‘(𝐼 mPwSer 𝐻)) = (.r𝑈)
2019oveqi 6935 . 2 (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r𝑈)𝑌)
21 fvex 6459 . . . . 5 (Base‘𝑆) ∈ V
22 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
23 eqid 2777 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2422, 9, 23mplval2 19828 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
25 eqid 2777 . . . . . 6 (.r‘(𝐼 mPwSer 𝑅)) = (.r‘(𝐼 mPwSer 𝑅))
2624, 25ressmulr 16398 . . . . 5 ((Base‘𝑆) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r𝑆))
2721, 26ax-mp 5 . . . 4 (.r‘(𝐼 mPwSer 𝑅)) = (.r𝑆)
28 fvex 6459 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
2911, 25ressmulr 16398 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3028, 29ax-mp 5 . . . 4 (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
31 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
32 eqid 2777 . . . . . 6 (.r𝑆) = (.r𝑆)
3331, 32ressmulr 16398 . . . . 5 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
3415, 33ax-mp 5 . . . 4 (.r𝑆) = (.r𝑃)
3527, 30, 343eqtr3i 2809 . . 3 (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (.r𝑃)
3635oveqi 6935 . 2 (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(.r𝑃)𝑌)
3714, 20, 363eqtr3g 2836 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  Vcvv 3397  cfv 6135  (class class class)co 6922  Basecbs 16255  s cress 16256  .rcmulr 16339  SubRingcsubrg 19168   mPwSer cmps 19748   mPoly cmpl 19750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-tset 16357  df-0g 16488  df-gsum 16489  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-subg 17975  df-mgp 18877  df-ring 18936  df-subrg 19170  df-psr 19753  df-mpl 19755
This theorem is referenced by:  ressply1mul  19997
  Copyright terms: Public domain W3C validator