![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmplmul | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmpl.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressmplmul | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.u | . . . . . 6 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
2 | eqid 2777 | . . . . . 6 ⊢ (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻) | |
3 | ressmpl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑈) | |
4 | eqid 2777 | . . . . . 6 ⊢ (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻)) | |
5 | 1, 2, 3, 4 | mplbasss 19829 | . . . . 5 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)) |
6 | 5 | sseli 3816 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
7 | 5 | sseli 3816 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))) |
8 | 6, 7 | anim12i 606 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) |
9 | eqid 2777 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
10 | ressmpl.h | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
11 | eqid 2777 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) | |
12 | ressmpl.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
13 | 9, 10, 2, 4, 11, 12 | resspsrmul 19814 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
14 | 8, 13 | sylan2 586 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌)) |
15 | 3 | fvexi 6460 | . . . 4 ⊢ 𝐵 ∈ V |
16 | 1, 2, 3 | mplval2 19828 | . . . . 5 ⊢ 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵) |
17 | eqid 2777 | . . . . 5 ⊢ (.r‘(𝐼 mPwSer 𝐻)) = (.r‘(𝐼 mPwSer 𝐻)) | |
18 | 16, 17 | ressmulr 16398 | . . . 4 ⊢ (𝐵 ∈ V → (.r‘(𝐼 mPwSer 𝐻)) = (.r‘𝑈)) |
19 | 15, 18 | ax-mp 5 | . . 3 ⊢ (.r‘(𝐼 mPwSer 𝐻)) = (.r‘𝑈) |
20 | 19 | oveqi 6935 | . 2 ⊢ (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘𝑈)𝑌) |
21 | fvex 6459 | . . . . 5 ⊢ (Base‘𝑆) ∈ V | |
22 | ressmpl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
23 | eqid 2777 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
24 | 22, 9, 23 | mplval2 19828 | . . . . . 6 ⊢ 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆)) |
25 | eqid 2777 | . . . . . 6 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘(𝐼 mPwSer 𝑅)) | |
26 | 24, 25 | ressmulr 16398 | . . . . 5 ⊢ ((Base‘𝑆) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑆)) |
27 | 21, 26 | ax-mp 5 | . . . 4 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑆) |
28 | fvex 6459 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝐻)) ∈ V | |
29 | 11, 25 | ressmulr 16398 | . . . . 5 ⊢ ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))) |
30 | 28, 29 | ax-mp 5 | . . . 4 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) |
31 | ressmpl.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
32 | eqid 2777 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
33 | 31, 32 | ressmulr 16398 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘𝑆) = (.r‘𝑃)) |
34 | 15, 33 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑃) |
35 | 27, 30, 34 | 3eqtr3i 2809 | . . 3 ⊢ (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (.r‘𝑃) |
36 | 35 | oveqi 6935 | . 2 ⊢ (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(.r‘𝑃)𝑌) |
37 | 14, 20, 36 | 3eqtr3g 2836 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 .rcmulr 16339 SubRingcsubrg 19168 mPwSer cmps 19748 mPoly cmpl 19750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-ofr 7175 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-seq 13120 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-tset 16357 df-0g 16488 df-gsum 16489 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-subg 17975 df-mgp 18877 df-ring 18936 df-subrg 19170 df-psr 19753 df-mpl 19755 |
This theorem is referenced by: ressply1mul 19997 |
Copyright terms: Public domain | W3C validator |