MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplelf Structured version   Visualization version   GIF version

Theorem mplelf 21918
Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplelf.p 𝑃 = (𝐼 mPoly 𝑅)
mplelf.k 𝐾 = (Base‘𝑅)
mplelf.b 𝐵 = (Base‘𝑃)
mplelf.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplelf.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplelf (𝜑𝑋:𝐷𝐾)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑅(𝑓)   𝐾(𝑓)   𝑋(𝑓)

Proof of Theorem mplelf
StepHypRef Expression
1 eqid 2727 . 2 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplelf.k . 2 𝐾 = (Base‘𝑅)
3 mplelf.d . 2 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 eqid 2727 . 2 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 mplelf.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
6 mplelf.b . . . 4 𝐵 = (Base‘𝑃)
75, 1, 6, 4mplbasss 21917 . . 3 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
8 mplelf.x . . 3 (𝜑𝑋𝐵)
97, 8sselid 3976 . 2 (𝜑𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)))
101, 2, 3, 4, 9psrelbas 21858 1 (𝜑𝑋:𝐷𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3427  ccnv 5671  cima 5675  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8834  Fincfn 8953  cn 12228  0cn0 12488  Basecbs 17165   mPwSer cmps 21817   mPoly cmpl 21819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-tset 17237  df-psr 21822  df-mpl 21824
This theorem is referenced by:  mplsubrglem  21924  mplvscaval  21936  mplmonmul  21952  mplcoe1  21953  mplbas2  21958  mplcoe4  21993  evlslem2  22003  evlslem6  22005  evlslem1  22006  ismhp3  22045  mhpmulcl  22051  mhpaddcl  22053  mhpinvcl  22054  mhpvscacl  22056  psdmplcl  22064  ply1basf  22095  mdegfval  25972  mdegleb  25974  mdegldg  25976  mdegaddle  25984  mdegvsca  25986  mdegle0  25987  mdegmullem  25988  mhmcompl  41693  mhmcoaddmpl  41696  rhmcomulmpl  41697  mplmapghm  41701  evlsvvvallem2  41707  evlsvvval  41708  evlsevl  41716  selvvvval  41730  evlselv  41732  mhpind  41739  evlsmhpvvval  41740  mhphf  41742
  Copyright terms: Public domain W3C validator