| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplelf | Structured version Visualization version GIF version | ||
| Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplelf.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplelf.k | ⊢ 𝐾 = (Base‘𝑅) |
| mplelf.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplelf.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplelf.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplelf | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 2 | mplelf.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | mplelf.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 4 | eqid 2729 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 5 | mplelf.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 6 | mplelf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | 5, 1, 6, 4 | mplbasss 21906 | . . 3 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
| 8 | mplelf.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 7, 8 | sselid 3944 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 10 | 1, 2, 3, 4, 9 | psrelbas 21843 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 mPwSer cmps 21813 mPoly cmpl 21815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-psr 21818 df-mpl 21820 |
| This theorem is referenced by: mplsubrglem 21913 mplvscaval 21925 mplmonmul 21943 mplcoe1 21944 mplbas2 21949 mplcoe4 21978 evlslem2 21986 evlslem6 21988 evlslem1 21989 ismhp3 22029 mhpmulcl 22036 mhpaddcl 22038 mhpinvcl 22039 mhpvscacl 22041 psdmplcl 22049 ply1basf 22087 mhmcompl 22267 mhmcoaddmpl 22268 rhmcomulmpl 22269 mdegfval 25967 mdegleb 25969 mdegldg 25971 mdegaddle 25979 mdegvsca 25981 mdegle0 25982 mdegmullem 25983 mplmapghm 42544 evlsvvvallem2 42550 evlsvvval 42551 evlsevl 42559 selvvvval 42573 evlselv 42575 mhpind 42582 evlsmhpvvval 42583 mhphf 42585 |
| Copyright terms: Public domain | W3C validator |