Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplmul | Structured version Visualization version GIF version |
Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
Ref | Expression |
---|---|
mplmul.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmul.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmul.m | ⊢ · = (.r‘𝑅) |
mplmul.t | ⊢ ∙ = (.r‘𝑃) |
mplmul.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mplmul.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mplmul.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
mplmul | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | eqid 2738 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
3 | mplmul.m | . 2 ⊢ · = (.r‘𝑅) | |
4 | mplmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
5 | mplmul.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
6 | 5 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
7 | mplmul.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
8 | 7, 1, 5 | mplval2 21112 | . . . . 5 ⊢ 𝑃 = ((𝐼 mPwSer 𝑅) ↾s 𝐵) |
9 | eqid 2738 | . . . . 5 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘(𝐼 mPwSer 𝑅)) | |
10 | 8, 9 | ressmulr 16943 | . . . 4 ⊢ (𝐵 ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑃)) |
11 | 6, 10 | ax-mp 5 | . . 3 ⊢ (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑃) |
12 | 4, 11 | eqtr4i 2769 | . 2 ⊢ ∙ = (.r‘(𝐼 mPwSer 𝑅)) |
13 | mplmul.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
14 | 7, 1, 5, 2 | mplbasss 21113 | . . 3 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
15 | mplmul.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
16 | 14, 15 | sselid 3915 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
17 | mplmul.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
18 | 14, 17 | sselid 3915 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
19 | 1, 2, 3, 12, 13, 16, 18 | psrmulfval 21064 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ∘r cofr 7510 ↑m cmap 8573 Fincfn 8691 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 .rcmulr 16889 Σg cgsu 17068 mPwSer cmps 21017 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-psr 21022 df-mpl 21024 |
This theorem is referenced by: mplmonmul 21147 mhpmulcl 21249 mdegmullem 25148 |
Copyright terms: Public domain | W3C validator |