| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmul | Structured version Visualization version GIF version | ||
| Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplmul.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmul.m | ⊢ · = (.r‘𝑅) |
| mplmul.t | ⊢ ∙ = (.r‘𝑃) |
| mplmul.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mplmul.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mplmul.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplmul | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 2 | eqid 2730 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 3 | mplmul.m | . 2 ⊢ · = (.r‘𝑅) | |
| 4 | mplmul.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 5 | mplmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 6 | 4, 1, 5 | mplmulr 21923 | . 2 ⊢ ∙ = (.r‘(𝐼 mPwSer 𝑅)) |
| 7 | mplmul.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 8 | mplmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | 4, 1, 8, 2 | mplbasss 21912 | . . 3 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
| 10 | mplmul.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 11 | 9, 10 | sselid 3946 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 12 | mplmul.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 13 | 9, 12 | sselid 3946 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 14 | 1, 2, 3, 6, 7, 11, 13 | psrmulfval 21858 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 class class class wbr 5109 ↦ cmpt 5190 ◡ccnv 5639 “ cima 5643 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 ∘r cofr 7654 ↑m cmap 8801 Fincfn 8920 ≤ cle 11215 − cmin 11411 ℕcn 12187 ℕ0cn0 12448 Basecbs 17185 .rcmulr 17227 Σg cgsu 17409 mPwSer cmps 21819 mPoly cmpl 21821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-tset 17245 df-psr 21824 df-mpl 21826 |
| This theorem is referenced by: mplmonmul 21949 mhpmulcl 22042 rhmcomulmpl 22275 mdegmullem 25989 |
| Copyright terms: Public domain | W3C validator |