| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1ass23l | Structured version Visualization version GIF version | ||
| Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
| Ref | Expression |
|---|---|
| ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1ass23l.t | ⊢ × = (.r‘𝑃) |
| ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
| ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
| Ref | Expression |
|---|---|
| ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 2 | 1on 8400 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1o ∈ On) |
| 4 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
| 5 | eqid 2729 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 6 | eqid 2729 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
| 9 | 7, 6, 8 | ply1mulr 22108 | . . 3 ⊢ × = (.r‘(1o mPoly 𝑅)) |
| 10 | 6, 1, 9 | mplmulr 21915 | . 2 ⊢ × = (.r‘(1o mPwSer 𝑅)) |
| 11 | eqid 2729 | . 2 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 13 | 6, 1, 12, 11 | mplbasss 21904 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(1o mPwSer 𝑅)) |
| 14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 15 | 7, 14 | ply1bascl2 22087 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPoly 𝑅))) |
| 16 | 13, 15 | sselid 3933 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 18 | 17 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 19 | 7, 14 | ply1bascl2 22087 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPoly 𝑅))) |
| 20 | 13, 19 | sselid 3933 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
| 24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 25 | 7, 6, 24 | ply1vsca 22107 | . . 3 ⊢ · = ( ·𝑠 ‘(1o mPoly 𝑅)) |
| 26 | 6, 1, 25 | mplvsca2 21921 | . 2 ⊢ · = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 27 | simpr1 1195 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
| 28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 21874 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 ◡ccnv 5618 “ cima 5622 Oncon0 6307 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 ↑m cmap 8753 Fincfn 8872 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 Ringcrg 20118 mPwSer cmps 21811 mPoly cmpl 21813 Poly1cpl1 22059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 |
| This theorem is referenced by: q1pvsca 33537 r1pvsca 33538 ply1sclrmsm 48378 |
| Copyright terms: Public domain | W3C validator |