Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1ass23l | Structured version Visualization version GIF version |
Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ass23l.t | ⊢ × = (.r‘𝑃) |
ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
Ref | Expression |
---|---|
ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
2 | 1on 8288 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1o ∈ On) |
4 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
5 | eqid 2739 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
6 | eqid 2739 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
9 | 7, 6, 8 | ply1mulr 21379 | . . 3 ⊢ × = (.r‘(1o mPoly 𝑅)) |
10 | 6, 1, 9 | mplmulr 21373 | . 2 ⊢ × = (.r‘(1o mPwSer 𝑅)) |
11 | eqid 2739 | . 2 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
12 | eqid 2739 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
13 | 6, 1, 12, 11 | mplbasss 21184 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(1o mPwSer 𝑅)) |
14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
15 | 7, 14 | ply1bascl2 21356 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPoly 𝑅))) |
16 | 13, 15 | sselid 3923 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
17 | 16 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
18 | 17 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
19 | 7, 14 | ply1bascl2 21356 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPoly 𝑅))) |
20 | 13, 19 | sselid 3923 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
21 | 20 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
22 | 21 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
25 | 7, 6, 24 | ply1vsca 21378 | . . 3 ⊢ · = ( ·𝑠 ‘(1o mPoly 𝑅)) |
26 | 6, 1, 25 | mplvsca2 21199 | . 2 ⊢ · = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
27 | simpr1 1192 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 21158 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ◡ccnv 5587 “ cima 5591 Oncon0 6263 ‘cfv 6430 (class class class)co 7268 1oc1o 8274 ↑m cmap 8589 Fincfn 8707 ℕcn 11956 ℕ0cn0 12216 Basecbs 16893 .rcmulr 16944 ·𝑠 cvsca 16947 Ringcrg 19764 mPwSer cmps 21088 mPoly cmpl 21090 Poly1cpl1 21329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-tset 16962 df-ple 16963 df-0g 17133 df-gsum 17134 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-minusg 18562 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-psr 21093 df-mpl 21095 df-opsr 21097 df-psr1 21332 df-ply1 21334 |
This theorem is referenced by: ply1sclrmsm 45676 |
Copyright terms: Public domain | W3C validator |