| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1ass23l | Structured version Visualization version GIF version | ||
| Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
| Ref | Expression |
|---|---|
| ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1ass23l.t | ⊢ × = (.r‘𝑃) |
| ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
| ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
| Ref | Expression |
|---|---|
| ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 2 | 1on 8497 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1o ∈ On) |
| 4 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
| 5 | eqid 2736 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 6 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
| 9 | 7, 6, 8 | ply1mulr 22166 | . . 3 ⊢ × = (.r‘(1o mPoly 𝑅)) |
| 10 | 6, 1, 9 | mplmulr 21973 | . 2 ⊢ × = (.r‘(1o mPwSer 𝑅)) |
| 11 | eqid 2736 | . 2 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
| 12 | eqid 2736 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 13 | 6, 1, 12, 11 | mplbasss 21962 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(1o mPwSer 𝑅)) |
| 14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 15 | 7, 14 | ply1bascl2 22145 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPoly 𝑅))) |
| 16 | 13, 15 | sselid 3961 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 18 | 17 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 19 | 7, 14 | ply1bascl2 22145 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPoly 𝑅))) |
| 20 | 13, 19 | sselid 3961 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
| 24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 25 | 7, 6, 24 | ply1vsca 22165 | . . 3 ⊢ · = ( ·𝑠 ‘(1o mPoly 𝑅)) |
| 26 | 6, 1, 25 | mplvsca2 21979 | . 2 ⊢ · = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 27 | simpr1 1195 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
| 28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 21932 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ◡ccnv 5658 “ cima 5662 Oncon0 6357 ‘cfv 6536 (class class class)co 7410 1oc1o 8478 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 .rcmulr 17277 ·𝑠 cvsca 17280 Ringcrg 20198 mPwSer cmps 21869 mPoly cmpl 21871 Poly1cpl1 22117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-ple 17296 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-ur 20147 df-ring 20200 df-psr 21874 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-ply1 22122 |
| This theorem is referenced by: q1pvsca 33618 r1pvsca 33619 ply1sclrmsm 48326 |
| Copyright terms: Public domain | W3C validator |