Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1ass23l | Structured version Visualization version GIF version |
Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ass23l.t | ⊢ × = (.r‘𝑃) |
ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
Ref | Expression |
---|---|
ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
2 | 1on 8340 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1o ∈ On) |
4 | simpl 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
5 | eqid 2736 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
6 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
9 | 7, 6, 8 | ply1mulr 21443 | . . 3 ⊢ × = (.r‘(1o mPoly 𝑅)) |
10 | 6, 1, 9 | mplmulr 21437 | . 2 ⊢ × = (.r‘(1o mPwSer 𝑅)) |
11 | eqid 2736 | . 2 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
12 | eqid 2736 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
13 | 6, 1, 12, 11 | mplbasss 21248 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(1o mPwSer 𝑅)) |
14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
15 | 7, 14 | ply1bascl2 21420 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPoly 𝑅))) |
16 | 13, 15 | sselid 3924 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
18 | 17 | adantl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
19 | 7, 14 | ply1bascl2 21420 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPoly 𝑅))) |
20 | 13, 19 | sselid 3924 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
22 | 21 | adantl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
25 | 7, 6, 24 | ply1vsca 21442 | . . 3 ⊢ · = ( ·𝑠 ‘(1o mPoly 𝑅)) |
26 | 6, 1, 25 | mplvsca2 21263 | . 2 ⊢ · = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
27 | simpr1 1194 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 21222 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 {crab 3284 ◡ccnv 5599 “ cima 5603 Oncon0 6281 ‘cfv 6458 (class class class)co 7307 1oc1o 8321 ↑m cmap 8646 Fincfn 8764 ℕcn 12019 ℕ0cn0 12279 Basecbs 16957 .rcmulr 17008 ·𝑠 cvsca 17011 Ringcrg 19828 mPwSer cmps 21152 mPoly cmpl 21154 Poly1cpl1 21393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-tset 17026 df-ple 17027 df-0g 17197 df-gsum 17198 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-grp 18625 df-minusg 18626 df-ghm 18877 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-psr 21157 df-mpl 21159 df-opsr 21161 df-psr1 21396 df-ply1 21398 |
This theorem is referenced by: ply1sclrmsm 45782 |
Copyright terms: Public domain | W3C validator |