| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1ass23l | Structured version Visualization version GIF version | ||
| Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
| Ref | Expression |
|---|---|
| ply1ass23l.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1ass23l.t | ⊢ × = (.r‘𝑃) |
| ply1ass23l.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1ass23l.k | ⊢ 𝐾 = (Base‘𝑅) |
| ply1ass23l.n | ⊢ · = ( ·𝑠 ‘𝑃) |
| Ref | Expression |
|---|---|
| ply1ass23l | ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 2 | 1on 8397 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 1o ∈ On) |
| 4 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) | |
| 5 | eqid 2731 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 6 | eqid 2731 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 7 | ply1ass23l.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | ply1ass23l.t | . . . 4 ⊢ × = (.r‘𝑃) | |
| 9 | 7, 6, 8 | ply1mulr 22138 | . . 3 ⊢ × = (.r‘(1o mPoly 𝑅)) |
| 10 | 6, 1, 9 | mplmulr 21945 | . 2 ⊢ × = (.r‘(1o mPwSer 𝑅)) |
| 11 | eqid 2731 | . 2 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
| 12 | eqid 2731 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 13 | 6, 1, 12, 11 | mplbasss 21934 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑅)) ⊆ (Base‘(1o mPwSer 𝑅)) |
| 14 | ply1ass23l.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 15 | 7, 14 | ply1bascl2 22117 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPoly 𝑅))) |
| 16 | 13, 15 | sselid 3927 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 18 | 17 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘(1o mPwSer 𝑅))) |
| 19 | 7, 14 | ply1bascl2 22117 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPoly 𝑅))) |
| 20 | 13, 19 | sselid 3927 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘(1o mPwSer 𝑅))) |
| 23 | ply1ass23l.k | . 2 ⊢ 𝐾 = (Base‘𝑅) | |
| 24 | ply1ass23l.n | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 25 | 7, 6, 24 | ply1vsca 22137 | . . 3 ⊢ · = ( ·𝑠 ‘(1o mPoly 𝑅)) |
| 26 | 6, 1, 25 | mplvsca2 21951 | . 2 ⊢ · = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 27 | simpr1 1195 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐴 ∈ 𝐾) | |
| 28 | 1, 3, 4, 5, 10, 11, 18, 22, 23, 26, 27 | psrass23l 21904 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ◡ccnv 5613 “ cima 5617 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Fincfn 8869 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 Ringcrg 20151 mPwSer cmps 21841 mPoly cmpl 21843 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 |
| This theorem is referenced by: q1pvsca 33564 r1pvsca 33565 ply1sclrmsm 48483 |
| Copyright terms: Public domain | W3C validator |