Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0b1d Structured version   Visualization version   GIF version

Theorem mulgt0b1d 42455
Description: Biconditional, deductive form of mulgt0 11257. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0b1d.a (𝜑𝐴 ∈ ℝ)
mulgt0b1d.b (𝜑𝐵 ∈ ℝ)
mulgt0b1d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
mulgt0b1d (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))

Proof of Theorem mulgt0b1d
StepHypRef Expression
1 mulgt0b1d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mulgt0b1d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mulgt0b1d.1 . . . . 5 (𝜑 → 0 < 𝐴)
65adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐴)
7 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulgt0d 11335 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
98ex 412 . 2 (𝜑 → (0 < 𝐵 → 0 < (𝐴 · 𝐵)))
101adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 𝐴 ∈ ℝ)
11 1re 11180 . . . . . . . 8 1 ∈ ℝ
12 rernegcl 42354 . . . . . . . 8 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
1311, 12mp1i 13 . . . . . . 7 (𝜑 → (0 − 1) ∈ ℝ)
143, 13remulcld 11210 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) ∈ ℝ)
1514adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) ∈ ℝ)
165adantr 480 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → 0 < 𝐴)
171recnd 11208 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
183recnd 11208 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1913recnd 11208 . . . . . . . 8 (𝜑 → (0 − 1) ∈ ℂ)
2017, 18, 19mulassd 11203 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (𝐴 · (𝐵 · (0 − 1))))
2120breq1d 5119 . . . . . 6 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (𝐴 · (𝐵 · (0 − 1))) < 0))
2221biimpa 476 . . . . 5 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐴 · (𝐵 · (0 − 1))) < 0)
2310, 15, 16, 22mulgt0con2d 42454 . . . 4 ((𝜑 ∧ ((𝐴 · 𝐵) · (0 − 1)) < 0) → (𝐵 · (0 − 1)) < 0)
2423ex 412 . . 3 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 → (𝐵 · (0 − 1)) < 0))
251, 3remulcld 11210 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
26 relt0neg2 42440 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
2725, 26syl 17 . . . 4 (𝜑 → (0 < (𝐴 · 𝐵) ↔ (0 − (𝐴 · 𝐵)) < 0))
28 1red 11181 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2925, 28remulneg2d 42398 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − ((𝐴 · 𝐵) · 1)))
30 ax-1rid 11144 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3125, 30syl 17 . . . . . . 7 (𝜑 → ((𝐴 · 𝐵) · 1) = (𝐴 · 𝐵))
3231oveq2d 7405 . . . . . 6 (𝜑 → (0 − ((𝐴 · 𝐵) · 1)) = (0 − (𝐴 · 𝐵)))
3329, 32eqtrd 2765 . . . . 5 (𝜑 → ((𝐴 · 𝐵) · (0 − 1)) = (0 − (𝐴 · 𝐵)))
3433breq1d 5119 . . . 4 (𝜑 → (((𝐴 · 𝐵) · (0 − 1)) < 0 ↔ (0 − (𝐴 · 𝐵)) < 0))
3527, 34bitr4d 282 . . 3 (𝜑 → (0 < (𝐴 · 𝐵) ↔ ((𝐴 · 𝐵) · (0 − 1)) < 0))
36 relt0neg2 42440 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
373, 36syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
383, 28remulneg2d 42398 . . . . . 6 (𝜑 → (𝐵 · (0 − 1)) = (0 − (𝐵 · 1)))
39 ax-1rid 11144 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
403, 39syl 17 . . . . . . 7 (𝜑 → (𝐵 · 1) = 𝐵)
4140oveq2d 7405 . . . . . 6 (𝜑 → (0 − (𝐵 · 1)) = (0 − 𝐵))
4238, 41eqtrd 2765 . . . . 5 (𝜑 → (𝐵 · (0 − 1)) = (0 − 𝐵))
4342breq1d 5119 . . . 4 (𝜑 → ((𝐵 · (0 − 1)) < 0 ↔ (0 − 𝐵) < 0))
4437, 43bitr4d 282 . . 3 (𝜑 → (0 < 𝐵 ↔ (𝐵 · (0 − 1)) < 0))
4524, 35, 443imtr4d 294 . 2 (𝜑 → (0 < (𝐴 · 𝐵) → 0 < 𝐵))
469, 45impbid 212 1 (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109  (class class class)co 7389  cr 11073  0cc0 11074  1c1 11075   · cmul 11079   < clt 11214   cresub 42348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219  df-2 12250  df-3 12251  df-resub 42349
This theorem is referenced by:  sn-ltmul2d  42456  sn-recgt0d  42460  mullt0b2d  42467
  Copyright terms: Public domain W3C validator