MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscutlem Structured version   Visualization version   GIF version

Theorem mulscutlem 28091
Description: Lemma for mulscut 28092. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
mulscutlem.1 (𝜑𝐴 No )
mulscutlem.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscutlem (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤   𝐵,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscutlem
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscutlem.1 . 2 (𝜑𝐴 No )
2 mulscutlem.2 . 2 (𝜑𝐵 No )
3 mulsprop 28090 . . . . . . . . 9 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
43a1d 25 . . . . . . . 8 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
543expa 1118 . . . . . . 7 ((((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
65ralrimivva 3188 . . . . . 6 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) → ∀𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
76ralrimivva 3188 . . . . 5 ((𝑒 No 𝑓 No ) → ∀𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
87rgen2 3185 . . . 4 𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
98a1i 11 . . 3 ((𝐴 No 𝐵 No ) → ∀𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
10 simpl 482 . . 3 ((𝐴 No 𝐵 No ) → 𝐴 No )
11 simpr 484 . . 3 ((𝐴 No 𝐵 No ) → 𝐵 No )
129, 10, 11mulsproplem10 28085 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
131, 2, 12syl2anc 584 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  cun 3929  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410   +no cnadd 8682   No csur 27608   <s cslt 27609   bday cbday 27610   <<s csslt 27749   0s c0s 27791   L cleft 27810   R cright 27811   +s cadds 27923   -s csubs 27983   ·s cmuls 28066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067
This theorem is referenced by:  mulscut  28092
  Copyright terms: Public domain W3C validator