MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscutlem Structured version   Visualization version   GIF version

Theorem mulscutlem 28034
Description: Lemma for mulscut 28035. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
mulscutlem.1 (𝜑𝐴 No )
mulscutlem.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscutlem (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤   𝐵,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscutlem
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscutlem.1 . 2 (𝜑𝐴 No )
2 mulscutlem.2 . 2 (𝜑𝐵 No )
3 mulsprop 28033 . . . . . . . . 9 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
43a1d 25 . . . . . . . 8 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
543expa 1118 . . . . . . 7 ((((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
65ralrimivva 3180 . . . . . 6 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) → ∀𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
76ralrimivva 3180 . . . . 5 ((𝑒 No 𝑓 No ) → ∀𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
87rgen2 3177 . . . 4 𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
98a1i 11 . . 3 ((𝐴 No 𝐵 No ) → ∀𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
10 simpl 482 . . 3 ((𝐴 No 𝐵 No ) → 𝐴 No )
11 simpr 484 . . 3 ((𝐴 No 𝐵 No ) → 𝐵 No )
129, 10, 11mulsproplem10 28028 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
131, 2, 12syl2anc 584 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3912  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387   +no cnadd 8629   No csur 27551   <s cslt 27552   bday cbday 27553   <<s csslt 27692   0s c0s 27734   L cleft 27753   R cright 27754   +s cadds 27866   -s csubs 27926   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010
This theorem is referenced by:  mulscut  28035
  Copyright terms: Public domain W3C validator