MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscutlem Structured version   Visualization version   GIF version

Theorem mulscutlem 28076
Description: Lemma for mulscut 28077. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
mulscutlem.1 (𝜑𝐴 No )
mulscutlem.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscutlem (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤   𝐵,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscutlem
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscutlem.1 . 2 (𝜑𝐴 No )
2 mulscutlem.2 . 2 (𝜑𝐵 No )
3 mulsprop 28075 . . . . . . . . 9 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
43a1d 25 . . . . . . . 8 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No ) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
543expa 1118 . . . . . . 7 ((((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) ∧ (𝑖 No 𝑗 No )) → (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
65ralrimivva 3178 . . . . . 6 (((𝑒 No 𝑓 No ) ∧ (𝑔 No No )) → ∀𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
76ralrimivva 3178 . . . . 5 ((𝑒 No 𝑓 No ) → ∀𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
87rgen2 3175 . . . 4 𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖)))))
98a1i 11 . . 3 ((𝐴 No 𝐵 No ) → ∀𝑒 No 𝑓 No 𝑔 No No 𝑖 No 𝑗 No (((( bday 𝑒) +no ( bday 𝑓)) ∪ (((( bday 𝑔) +no ( bday 𝑖)) ∪ (( bday ) +no ( bday 𝑗))) ∪ ((( bday 𝑔) +no ( bday 𝑗)) ∪ (( bday ) +no ( bday 𝑖))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑒 ·s 𝑓) ∈ No ∧ ((𝑔 <s 𝑖 <s 𝑗) → ((𝑔 ·s 𝑗) -s (𝑔 ·s 𝑖)) <s (( ·s 𝑗) -s ( ·s 𝑖))))))
10 simpl 482 . . 3 ((𝐴 No 𝐵 No ) → 𝐴 No )
11 simpr 484 . . 3 ((𝐴 No 𝐵 No ) → 𝐵 No )
129, 10, 11mulsproplem10 28070 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
131, 2, 12syl2anc 584 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3909  {csn 4585   class class class wbr 5102  cfv 6500  (class class class)co 7370   +no cnadd 8607   No csur 27586   <s cslt 27587   bday cbday 27588   <<s csslt 27728   0s c0s 27773   L cleft 27792   R cright 27793   +s cadds 27908   -s csubs 27968   ·s cmuls 28051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-1o 8412  df-2o 8413  df-nadd 8608  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27692  df-sslt 27729  df-scut 27731  df-0s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969  df-subs 27970  df-muls 28052
This theorem is referenced by:  mulscut  28077
  Copyright terms: Public domain W3C validator